Review of W and Z physics at the Jevatron

Sandra Leone INFN Pisa

IFAE Incontri di Fisica delle Alte Energie Catania 30 Marzo -2 Aprile 2005

Outline

- The Tevatron & the experiments
- Electroweak physics at the Tevatron
- W and Z Cross section measurements (e, μ, τ)
- W and Z asymmetries
- DiBoson production
- W Mass measurement
- Conclusions and future prospects

Why Electroweak Measurements

at the Tevatron?

- Single boson production: couplings to the fermions
- Diboson production: self- or triple gauge couplings
- Precise Electroweak measurement are challenging:
 - > Constrain the Standard Model

OR

- > Evidence of Physics Beyond SM
- Also crucial as input for LHC physics program:
 - > Input to Parton Distribution Functions
 - > Some Tevatron signals will be LHC background
- After LEP era we are now into Tevatron era:
 - Tevatron is for the next few years the only accelerator that can produce Ws directly: more W's, WZ pairs, large sqrt(s) and Pt.

The Tevatron

춖

Run II: $\sqrt{s} = 1.96$ TeV Started in spring 2001 After a commissioning period,

data "good for physics" since February 2002

IFAE Catania 30 Marzo – 2 Aprile 2005

Tevatron Peak Luminosity

 1×10^{32}

Peak Luminosities above 1×10^{32} cm⁻² s⁻¹ now common <u>Record</u>: initial lum <u>1.24 × 10³²</u> cm⁻² s⁻¹ on <u>March 21rst</u>

IFAE Catania 30 Marzo – 2 Aprile 2005

Integrated Luminosity

IFAE Catania 30 Marzo – 2 Aprile 2005

춖

Production Processes

Tevatron as a vector boson factory: *) ~30,000 W-> ev events/week ~2500 Z-> ee events/week ~120 WW, 40 WZ events/week

IFAE Catania 30 Marzo – 2 Aprile 2005

g W/Z Gauge Bosons Identification At hadronic collider W and Z bosons hadronic decays are overwhelmed by QCD background. \Rightarrow Identification through leptonic decays proton proton W^+ W→ev antiproton antiproton P_τμ>20GeV Έ_⊤><u>25</u>GeV $Z \rightarrow \mu \mu$ Muon Electron Muon Neutrino Underlying event Underlying even Hadronic recoil Hadronic recoil ₽_T>25GeV T1 P_Tµ>20GeV

W[±] signature: Isolated IFAE Energetic Lepton + F_T 30 Marzo = 2 Aprile 2005

Z Signature: Two Isolated Energetic Leptons (opposite charge)

INFIN PISA

IFAF C

- Overall good agreement with the NNLO calculations
- Accuracy limited by the systematic effects
- Uncertainties dominated by the luminosity measuremnts (~6%)
- Other systematics: dominated by PDF uncertainties (~2%)

Lepton Universality in W Decays

From the measurements of the W $\rightarrow ev$ and W $\rightarrow \mu v$ cross sections obtain cross section ratio U:

$$U = \frac{\sigma.Br(W\rightarrow\mu\nu)}{\sigma.Br(W\rightarrowe\nu)} = \frac{\Gamma(W\rightarrow\mu\nu)}{\Gamma(W\rightarrowe\nu)} = \frac{g_{\mu}^{2}}{g_{e}^{2}}$$

Many systematic uncertainties cancel out

$$\frac{g_{\mu}}{g_{e}} = 0.998 \pm 0.012$$

In the same way from $W \rightarrow ev$ and $W \rightarrow \tau v$ cross sections:

 $\frac{g_{\tau}}{g_{e}} = 0.99 \pm 0.02_{stat} \pm 0.04_{syst}$

IFAE Catania 30 Marzo – 2 Aprile 2005

 A_{FB} arises from Axial and Vector couplings Z and γ interference term

Z Asymmetry

 $\frac{d\sigma}{d\cos\theta} = A(1+\cos^2\theta) + B\cos\theta$

 δA

$$A_{FB} = \frac{d\sigma(\cos\theta > 0) - d\sigma(\cos\theta < 0)}{d\sigma(\cos\theta > 0) + d\sigma(\cos\theta < 0)}$$
$$A_{FB} = \frac{3B}{2}$$

 Measurement limited by statistics
 Complementary to LEP, far from the Z pole
 Sensitivity to heavy neutral bosons (Z')
 Extract quark, electron couplings and sin²θ_w Eff=0.2238±0.004±0.003

 e^+

e

Q

Z Asymmetry & do/dy(Z)

IFAE Catania 30 Marzo – 2 Aprile 2005

1111 IV I 15a

Generally good agreement with

NNLO prediction

W Charge Asymmetry

- u quark inside proton carries higher fraction of p momentum than d-bar quark
- Use W's to probe the proton structure

>obtain info on momentum distributions of the quarks and gluons (PDF's)

IFAE Ca ←anti-proton direction proton direction→ 30 Marzo – 2 Aprile 2005

W Charge Asymmetry

Production asymmetry in ppbar->WX is sensitive to U/D

$$A(y_W) = \frac{d\sigma(W^+)/dy - d\sigma(W^-)/dy}{d\sigma(W^+)/dy + d\sigma(W^-)/dy}$$

 <u>Measured: e asymmetry:</u> convolution of W production asymmetry + V-A decay

$$A(\eta_l) = \frac{d\sigma(e^+)/d\eta - d\sigma(e^-)/d\eta}{d\sigma(e^+)/d\eta + d\sigma(e^-)/d\eta}$$

- charge ID at high |η| is crucial misID probability ~4% at |η| ~ 2
- Bin data in P_T (2 bins) to increase sensitivity

IFAE Catania 30 Marzo – 2 Aprile 2005 hep-ex/0501023

•Wy to probe WWy coupling

WZ to probe WWZ coupling

IFAE Catania 30 Marzo – 2 Aprile 2005

Wy (Zy) selection

- •W + jets where
 - $\pi^0 \rightarrow \gamma \gamma$,
 - jets faking photon

CDF Fake Rates:

0.2% @JetE_T=10 GeV 0.06% JetE_T>25GeV

DO Fake Rates:

~ 0.4% to 0.2% decreasing with E_{τ}

Detector

30 Marzo – 2 Aprile 2005

WWy: triple gauge couplings (2005)

Zy: neutral diboson couplings

E	Ξ _T (γ)	Distribution				
		1D	limit	ts at 95% CL		
		LEP		Tevatron (D0)		
		$-0.049 < h_{30}^{\gamma} < 0.00$	8	$-0.23 < h_{30}^{\gamma} < 0.23$		
		-0.002 < h ^γ ₄₀ < 0.03	34	-0.019 < h ^γ ₄₀ < 0.019		
		-0.20 < h ^z ₃₀ < 0.07	,	-0.23 < h ^z ₃₀ < 0.23		
		-0.05 < h ^Z ₄₀ < 0.12		-0.020 < h ^z ₄₀ < 0.020		

hep-ex/0502036

Most general ZV γ coupling is parametrized by 2 CP-violating (h₁, h₂) and 2 CP-conserving (h₃, h₄) complex coupling parameters(Baur,Berger 1993). Tevatron has better limits on h₄ than LEP

WW production

- Very important for the Higgs searches: gg->H->WW
- •Test of SM: self-interaction of the heavy bosons (WW γ/Z)
- Search for new heavy boson states
- Large statistics of WW events at LEP2 (~10K/expt)
- Run I: only one measurement with limited sensitivity (CDF, 5 evts 1.3 ±0.3 bkgrd):

$$\sigma(WW)$$
 = (10.2 $^{\text{+6.1}}$ $_{\text{-5.2}} \pm$ 1.6) pb

Prediction for the cross section: $\sigma(WW \rightarrow II_{VV})_{NLO} = (12.4 \pm 0.8) \text{ pb}$ @ 1.96 TeV

WW event selection

First goal for Run II: establish the signal CDF and DO used dilepton channel BR~5%, best sensitivity (S/B) Selection: =2 isolated leptons, large \mathbb{Z}_{T} Background sources: Drell-Yan with fake P₁ •W+jets/ γ (fake leptons) • tt, WZ, ZZ

IFAE Catania 30 Marzo – 2 Aprile 2005

WW Kinematics

Kinematics of observed events is consistent with the WW production

IFAE Catania 30 Marzo – 2 Aprile 2005

		4 Lep	3 Lep	2 Lep	Comb.
	WZ/ZZ	0.06±0.01	0.91±0.07	1.34±0.21	2.31±0.29
	Bkg	0.01±0.02	0.07±0.06	0.94±0.22	1.02±0.24
	Bkg+Sig	0.07±0.02	0.98±0.09	2.28±0.35	3.33±0.42
021	Data	0	0	3	3

IFAE Catania 30 Marzo – 2 Aprile 2005

hep-ex/0501

INFN Pisa

W Boson Mass

 W mass from fit of transverse mass distribution

•With L=200pb⁻¹ (ICHEP2004) ΔM_W =76 MeV/c² (e+ μ) combined \rightarrow Already better than Run1 CDF

 With 2fb⁻¹ expect
 ∆(Mw)~30MeV/c²
 √theoretical uncertainties [if not
 improved] will become important

 Will use next PDFs fits with CDF W charge asymmetry measurement included

IFAE Catania 30 Marzo – 2 Aprile 2005

Theoretical / phenomenological inputs:

 \checkmark QED radiation

✓QCD : W Pt spectrum, PDF's

Contributions to W Mass

W propagator includes H, tb, hypothetical new particle loops

Precise knowledge of M_W constrains SM M_H , as well as hypothetical new particles

IFAE Catania 30 Marzo – 2 Aprile 2005

CDF RunII W Mass

W width: direct measurement

- •Determine W width using the tail of $M_T(Iv)$ distribution
- Event counting experiment: 75K W->ev candidates total
 - ✓Normalization: 50<M_T<100 GeV/c²

 \checkmark 625 events 100 < M_T < 200 GeV/c2 signal region

consistent with SM and indirect measurements

 Syst. error dominated by EM&Had resolution and underlying event IFAE Catania
 30 Marzo – 2 Aprile 2005

Conclusions

- Most of Run I measurements re-established and/or already improved + new Run II results:
 - ⇒W/Z Inclusive cross section, widths, BF in all leptonic channels
 - \Rightarrow Significant number of diboson candidate events:
 - ✓ Many new results on diboson production important steps towards the Higgs searches
 ⇒ First Run II measurement of the W width
- New W charge asymmetry data included in PDF2005 fits

IFAE Catania 30 Marzo – 2 Aprile 2005

The Road Ahead

- Looking forward to high precision EWK measurements:
 - \Rightarrow W boson Mass
 - \Rightarrow differential W/Z cross sections
 - $\sqrt{d\sigma/dy}$ measurements in Z's will further constrain PDF uncertainties.
 - $\sqrt{d\sigma/dp_T}$ in both W's and Z's will further test QCD predictions.
- Tevatron experiments just starting to explore potential of Run II data