Decadimenti b \rightarrow s γ

Risultati più recenti da BaBar F. Bucci Università di Pisa

XVII IFAE Catania, 30 marzo – 2 Aprile 2005

- Do not occur at tree level, so branching fractions (B) tend to be small rare decays
- Relatively low SM uncertainty for *B* and CP asymmetry (A_{CP})
 good place to look for non-SM physics

New BaBar results:

- $B \rightarrow X_s \gamma$ (two independent measurements)
- $B \rightarrow K^* \gamma$ (time-dependent A_{CP} measurement)

$B \rightarrow X_{s\gamma}$ Physics Interest

Both the $B \rightarrow X_s \gamma$ branching fraction and the direct CP asymmetry are sensitive to new physics

• The branching fraction in the SM has been computed with $\sim 8\%$ precision:

 $\mathscr{B}(B \to X_s \gamma)[E_{\gamma} > 1.6 \text{ GeV}] = (3.57 \pm 0.30) \times 10^{-4}$

Direct CP asymmetry is expected to be small:

$$A_{CP}(b \to s\gamma) \equiv \frac{\Gamma(b \to s\gamma) - \Gamma(b \to s\gamma)}{\Gamma(b \to s\gamma) + \Gamma(\bar{b} \to \bar{s\gamma})} = 0.004^{+0.0024}_{-0.0014}$$

P. Gambino and M. Misiak, Nucl. Phys. B 611, 338 (2001)

T. Hurth, E. Lunghi and W. Porod, hep-ph/0312260

• If $b \rightarrow s\gamma$ and $b \rightarrow d\gamma$ are not distinguished, A_{CP} predicted $A_{CP}(b \rightarrow s\gamma + b \rightarrow d\gamma) \approx 10^{-9}$

T. Hurth and T. Mannel, hep-ph/0109041(2001)

$B \rightarrow X_s \gamma$ Physics Interest

The E_{γ} spectrum measurement gives information on the Heavy Quark Expansion parameters m_b and $\mu_{\pi}^{2} = -\lambda_{1}$

- Reflects motion of the b quark inside the B meson
- Underlying shape function is needed to extract CKM element $|V_{ub}|$ from inclusive $B \rightarrow X_u I_v$ measurements
- Not affected by new physiscs

Theorist now predict **truncated moments and partial branching fractions** (PBF) above various minimum E_v cuts, **as function of HQET parameters**

$B \rightarrow K^{*0}\gamma (K^{*0} \rightarrow K^{0}_{s}\pi^{0})$ Physics Interest

If both B⁰ and B⁰ can decay to a final state f, difference in proper decay times of the signal B and the other (tag) B is distributed as:

 Δt

$$f_{\pm}(\Delta t) = \frac{e^{-\tau}}{4\tau} [1 \mp C_f \cos(\Delta m_d \Delta t) \mp S_f \sin(\Delta m_d \Delta t)]$$

- In the limit of massless s the photons are completely polarised, with opposite helicities for B⁰ and B⁰
- Thus, in the SM the CPV asymmetry due to the interference between decays with or without mixing is expected to be small:

$$\Rightarrow$$
 S_{K*0y} \approx -2 **m_s/m_b** sin 2 $\beta \approx$ -0.04, C_{K*0y} \approx 0

In SM extensions, new particles could appear in the loop, enhancing CP violation

Recent theoretical developments predict that all contributions to $K_s^0 \pi^0 \gamma$ have same CP, so no need to resolve resonance structure

$B \rightarrow X_s \gamma$ Signal Model

The $B \rightarrow X_s \gamma$ calculations give smooth spectra, no resonances

Need predicted spectra to estimate experimental efficiency, optimize selection cuts, fit the measured spectrum

Photon energy in the B rest fame is related to the mass of X_s: $E_{\gamma}^{B} = \frac{m_{B}^{2} - m_{X_{s}}^{2}}{2m_{B}}$

Replace m_{Xs} spectrum below some cutoff by K^{*}(892) Breit-Wigner of same area.

Backgrounds to High-Energy Photon from $B \rightarrow X_s \gamma$

Other BB States

- Photon from meson decay, mostly π^0 or η
- Neutral hadron fakes γ
- Electron from $B \rightarrow Xe_V$ fakes γ

Continuum

- Photon from meson decay, mostly π^0 or η
- Neutral hadron fakes γ
- Initial state radiation

Photon energy spectra as predicted by MC before selection cuts

Techniques

Two independent BaBar measurements, both on \approx 88.10⁶ BB pairs

Sum of exclusive final states

- 38 exclusive modes (~ 55 % of all final state) reconstructed
- Kinematic constraints suppress backgrounds significantly
- Efficiency and fraction of unmeasured modes sensitive to X_s fragmentation
- Precise measurement of E_{γ} in the B rest frame ($\sigma_E \sim 5$ MeV)

Fully inclusive

- Reconstruct only photon
- High momentum lepton from other B to greatly reduce continuum background
- Little sensitivity to fragmentation details
- Photon energy spectrum in Y(4S) rest of mass frame

$B \rightarrow X_s \gamma$ Sum of Exclusive Modes

- Reconstruct X_s in 38 states
- Use event shape to reduce continuum background
- Use $\Delta E \equiv E_B^* \sqrt{s/2}$ and $m_{ES} \equiv \sqrt{(\sqrt{s}/2)^2 - p_B^{*2}}$ to constrain exclusive states
- Fit m_{ES} (for each m_{Xs} bin) to extract signal yield
- Use observed yield in different modes to correct MC fragmentation

Fit to data for full m_{χ_s} range (0.6-2.8 GeV)

$B \rightarrow X_{s\gamma}$ Sum of Exclusive Modes

Missing States

Dominant syst. uncertainty at m_{Xs}>2.2 GeV
 The 25% component which is present at all M_{Xs} masses comes from K_L, which is well understood because B→X_sγ decays are isospin symmetric

Efficiency

- Not including missing states
- Highest for low-multiplicity

$B \rightarrow X_{s\gamma}$ Sum of Exclusive Modes

Systematic Uncertainties for 0.6<m_{xs}<2.8 GeV

Systematic	Uncertainty	
BB-count	1.1%	
Signal MC Stats	1.1%	
Peaking BG	1.6%	Using fit to the measured spectrum, bootstrap the signal Monte Carlo with the fitted parameters
Fragmentation	5.9%	
Detection	6.1%	
Fitting	+9.5 -2.9%	
Missing states	+13.8 -7.6%	
Total experimental	+19.0 -12.0%	
Signal model-dependence	+2.1 -2.4%	

Lines in red: significant improvement expected with more statistics

$B \rightarrow X_{s\gamma}$ Fully Inclusive

Background reduction is the primary challenge

Continuum background

- Reduced by event topology and highmomentum lepton tag.
- Remaining bkg subtracted using offresonance data

BB background

- Selection cuts reduce it 8 times more than signal
- Remaining bkg subtracted using MC
- 97% of BB background simulation corrected using data samples

Photon spectra from MC after selection cuts

$B \rightarrow X_{s\gamma}$ Fully Inclusive

Overall signal efficiency

- Topological cuts, in particular, result in a strong energydependence to the efficiency
- But no significant dependence on fragmentation model

$B \rightarrow X_{s\gamma}$ Fully Inclusive

Systematic uncertainties on Branching Fraction for 2.0<E*,<2.7 GeV

Systematic	Uncertainty			
Photon Detection and Quality	3.3%	Use the spectrum measurement, in particular its mean to reduce		
Topological Cuts	3.0%			
Fragmentation-Dependence	1.4%	the signal model-dependence		
Lepton ID	2.2%	 Linear relation between predicted efficiency and (F*) 		
Tag Efficiency	3.0%	• KN 460 matched measured mean		
Miscellaneous	1.7%	hence used for efficiency		
BB Subtraction	6.5%	 Uncertainty on efficiency 		
Total experimental	8.4%	translated from measured $\langle \ E^{*}_{\ \gamma} \rangle$		
Signal model-dependence	4.8%	erriciency		

Lines in red: significant improvement expected with more statistics

$B \rightarrow X_s \gamma$ Moments

Oth to **3**rd moments of the photon energy spectrum as a function of minimum energy threshold in the B rest frame

$B \rightarrow X_{s\gamma}$ Branching Fraction

No discrepancy with SM

Sum of exclusive modes

Fully Inclusive

			the second se	
	Scheme	PBF(10-4) , Ε _γ >1.9 GeV	Energy range	PBF (× 10 ⁻⁴) true E range B frame
"Kinetic"		$3.27 \pm 0.18 \begin{array}{c} {}^{+0.62} {}^{+0.12} \\ {}^{-0.39} {}^{-0.12} \end{array}$		\Box ange, b name
			1.9-2.7	$3.67 \pm 0.29 \pm 0.34 \pm 0.29$
"Shape Function"		$3.31 \pm 0.18 \begin{array}{c} ^{+0.63} ^{+0.02}_{-0.40} ^{+0.02}_{-0.03}$		
			2.0-2.7	$3.41 \pm 0.27 \pm 0.29 \pm 0.23$
-				
Extrapolated BF (E_{γ}>1.6 GeV)		2.1-2.7	2.97±0.24±0.25±0.17	
	(3.42 ± 0.12)	$19 + 0.64 + 0.07 - 0.41 - 0.08 \times 10^{-4}$	2.2-2.7	2.42±0.21±0.20±0.13

Average from two schemes

BF(PBF)±stat.±syst.±model-dep.

$B \longrightarrow X_S \gamma \text{ Spectrum Fits}$ Fits from sum of exclusive method to

$B \rightarrow X_{s\gamma} CP Asymmetry$

Sum of exclusive modes

Direct CP asymmetry for sum of 12 final states (published) $A_{CP}=0.025 \pm 0.050(stat.) \pm 0.015(syst.)$

Fully inclusive

 $A_{CP}(b \rightarrow s\gamma + b \rightarrow d\gamma) = -0.110 \pm 0.115 \text{ (stat.)} \pm 0.017 \text{ (syst.)}$

No discrepancy with standard model. Both measurements are statistics-limited

$B \rightarrow X_s \gamma$ Future

Sum of exclusive modes

Branching fraction:

 Dominant uncertainty systematics. Largest component due to missing states. 10% measurement might be possible with 500 fb⁻¹

Moments:

 Dominant uncertainty statistical. Could be halved with 500fb⁻¹

Fully inclusive

Branching fraction:

 Uncertainties have roughly equal size components. Large component of both systematic and signal model uncertainties depends on the size of the data sample. Uncertainty below 7% is expected with 500 fb⁻¹

Moments:

 Dominant uncertainty statistical. With 500 fb⁻¹, 0.8% precision expected

$B \rightarrow K^{*0}\gamma (K^{*0} \rightarrow K^{0}_{s}\pi^{0})$ Technique

Analysis performed on 232 million BB events

- Signal events selected using m_{ES}, ∆E and event shape cuts
- Remaining tracks assigned to the other B and used to determine its decay vertex position and tag flavor

B_{CP} decay vertex position reconstructed using

- K⁰_s reconstructed vertex and mometum
- Beam-line position and direction

$$B \rightarrow K^{*0}\gamma (K^{*0} \rightarrow K^{0}_{s}\pi^{0})$$
 Results

Measured Δt , m_{ES}, ΔE , m_{K*} and event shape variables are inputs to an unbinned maximum-likelihood fit

Background-subtracted data for m_{ES} and ΔE compared to the corresponding signal PDF

$B \rightarrow K^{*0}\gamma (K^{*0} \rightarrow K^{0}_{s}\pi^{0})$ Results

preliminary

$$0.8 < m_{K_s^0 \pi^0} < 1.0 \text{ GeV/c}^2 :$$

$$S_{K^{*0} \gamma} = -0.21 \pm 0.40 \pm 0.05$$

$$C_{K^{*0} \gamma} = -0.40 \pm 0.23 \pm 0.04$$

$$1.1 < m_{K_s^0 \pi^0} < 1.8 \text{ GeV/c}^2 :$$

$$S_{K_s^0 \pi^0 \gamma} = 0.9 \pm 1.0 \pm 0.2$$

$$C_{K_s^0 \pi^0 \gamma} = -1.0 \pm 0.5 \pm 0.3$$

Largest component of systematic uncertainty is from possible CP asymmetry in BB background

Consistent with the SM expectation of CP-violating asymmetry ≈ 0 , statistics-limited results

$B \rightarrow K^{*0}\gamma (K^{*0} \rightarrow K^{0}_{s}\pi^{0})$ Results

Background-subtracted Δt distributions for $B \rightarrow K^{*0}\gamma (K^{*0} \rightarrow K^{0}{}_{s}\pi^{0})$

No evidence of SM violation

Conclusions

Lots of preliminary new results from BaBar on radiative rare decays have been presented

- Precision on $\mathcal{B}(B \rightarrow X_s \gamma)$ can be improved with higher statistics (at least in the fully inclusive analysis)
- Photon spectrum measurements (especially its moments) are becoming useful for determining HQET parameters
- Both time-dependent CP asymmetry in radiative penguin processes (211 fb⁻¹) and direct CP violation search in $B \rightarrow X_s \gamma(+B \rightarrow X_d \gamma)$ (81fb⁻¹) show no discrepancy with SM expectations. Statistics-limited

Time-Dependent CPV Asymmetry

If both B⁰ and B⁰ can decay to a final state f, difference in proper decay times of the signal B and the other (tag) B is distributed as:

$$f_{\pm}(\Delta t) = \frac{e^{\frac{|\Delta t|}{\tau}}}{4\tau} [1 \mp C_f \cos(\Delta m_d \Delta t) \mp S_f \sin(\Delta m_d \Delta t)]$$

 $C_{f} \text{ corresponds to ``direct'' CPV:}$ $C_{f} = \frac{1 - |\lambda_{f}|^{2}}{1 + |\lambda_{f}|^{2}}$

 $S_{f} \text{ corresponds to CPV in interference}$ between mixing and decay: $S_{f} = \frac{-2 \operatorname{Im} \lambda_{f}}{1 + |\lambda_{f}|^{2}}$

mixing phase

decay amplitude phase