Recent Progress in Kaon Physics

Federico Mescia INFN-Frascati and University of Rome, "Roma Tre"

many thanks to the organizers

IFAE, Catania March 30 – April 2

A REMARKABLE HISTORY

For the Future, Kaon physics will help looking for <u>inconsistencies</u> in SM using independent observables affected by small theoretical uncertainties and different sensitivity to new physics.

Calculations of Re(ε'/ε)

Re(ϵ'/ϵ) $\propto \eta$, but large hadronic uncertainties currently make it impossible to convert measurement of Re(ϵ'/ϵ) into a meaningful CKM constraint (except that $\eta \neq 0$).

Rare Kaon Decays will fill the miss

Rare K Decays and the Unitarity Triangle

by Komatsubara FPCP04

Rare Kaon decays provide quantitative tests of SM independent from B mesons:

they are theoretically clean and highly sensitive to NP.

Rare K Decays: Present Status

Golden Modes	Standard Model	Experiment	New generation o
$K_L \rightarrow \pi^0 \nu \overline{\nu}$	$3.0^{+0.6}_{-0.6} \times 10^{-11}$	$< 5.9 \times 10^{-7}$ KTeV	experiments neede
$K_L \rightarrow \pi^0 e^+ e^-$	$3.7^{+1.1}_{-0.9} \times 10^{-11}$	$< 2.8 \times 10^{-10}$ KTeV	[JPARC@ KEK
$K_L \rightarrow \pi^0 \mu^+ \mu^-$	$1.5^{+0.3}_{-0.3} \times 10^{-11}$	$< 3.8 \times 10^{-10}$ KTeV	2008 2010
$K^+ \to \pi^+ \nu \overline{\nu}$	$7.8^{+1.2}_{-1.2} \times 10^{-11}$	$14.7^{+13.0}_{-8.9} \times 10^{-11}$ E787 E949	

by C. Smith Moriond'05

-Expect results from data collected by E391a (proposed SES~3 10⁻¹⁰)

$K^+ \rightarrow \pi^+ \nu \nu$: State of the Art

hep-ex/0403036 PRL93 (2004)

Aiming to get a few % th. accurancy on $K^+ \rightarrow \pi^+ vv$, subleading terms $\propto (1/m_r)^2$ have to be considered:

1) Subleading *c-quark loops*: Dimension-eight operators

Possible correction to $P_c(x_c)$ of the order of $m_K^2 / m_c^2 \approx 15\%$ Lu and Wise (1994)

2) Residual *u-quark loops*: Genuine $\Delta S=1$ Long-distance effects Possible correction to $P_c(x_c)$ of the order of $\Lambda_{OCD}^2 / m_c^2 \approx 10\%$

Falk, Lewandowski, Petrov (2000)

by C. Smith Moriond'05

• Z Penguin in ChPT Lu and Wise (1994) is wrong

A new operator must be introduced in ChPT to enforce GIM mechanism:

$$L_{|\Delta S|=1+GIM}^{(2)} = F_{\pi}^{4}G_{8} \left\{ \left\langle \lambda_{6}L_{\mu}L^{\mu} \right\rangle - \frac{2ig}{\cos\theta_{W}} \left\langle \lambda_{6}L_{\mu}T_{3} \right\rangle Z^{\mu} \right\}$$
$$\underline{at \ O(G_{F}^{2}p^{2})} \quad \underline{K_{L}} \quad Z = 0$$

With this new piece: 1/ No sensitivity to the singlet part of the *Z* current. 2/ <u>At loop level, a structure matching SD arises.</u>

Conclusion

The result of the analysis is that instead of $m_K^2 / m_c^2 \approx O(15\%)$ for $\langle \pi | Q_c^{(8)} | K \rangle$ and $\Lambda_{OCD}^2 / m_c^2 \approx O(10\%)$ for *u-quark*, both of them scale as

 $(\pi F_{\pi} / m_c)^2 \approx O(5\%)$ $P_c(x_c) + \delta P_c: \begin{cases} P_c(x_c) = 0.39 \pm 0.07 \\ \delta P_c = 0.04 \pm 0.02 \end{cases}$

	BSM Scenarios Compiled by S. Kettel		
	$BR(K^+ \to \pi^+ \nu \overline{\nu}) \times 10^{11}$	$BR(K_{\rm L}^0 \to \pi^0 v \overline{v}) \times 10^{11}$	
SM	8.0 ± 1.1	3.0 ± 0.6	
MFV hep-ph/0310208	≤ 19.1	≤ 9.9	
EEWP NP B697 133	7.5 ± 2.1	31 ± 10	
EDSQ hep-ph/0407021	≤ 15	≤ 10	
MSSM hep-ph/0408142	≤ 40	≤ 50	

•Complementary programme to the high energy frontier:

-When new physics will appear at the Tevatron/LHC, K rare decays may help to understand the nature of it

The most accurate test of CKM unitarity $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$

$$\begin{split} & V_{us} \text{ from } K_{\ell 3} \text{ decays} \\ & \Gamma(K \to \pi l \nu(\gamma)) = \frac{G_F^2 M_K^5}{192 \pi^3} C_k^2 (V_{us}|^2 \cdot |f_+^{K^0 \pi^-}(0)|^2 (I_k S_{ew}(1 + \delta_{SU(2)}^K + \delta_{em}^{Kl})^2) \\ & S_{ew} = 1.0230(3) \underbrace{\frac{\delta_{SU(2)}^K(\gamma_0)}{K_{e3}^{+3}} \frac{3 \text{-body}}{2.31 \pm 0.22}}_{K_{\mu 3}^{-0}} \underbrace{\frac{-0.35 \pm 0.16}{-0.35 \pm 0.16}}_{0.05 \pm 0.20} \underbrace{\frac{-0.10 \pm 0.16}{+0.55 \pm 0.10}}_{-0.05 \pm 0.20} \underbrace{\frac{Accurately known}{K_{us}}}_{V_{us}} \frac{\Delta |V_{us}|}{|V_{us}|} \cong 0.2\% \end{split}$$

 $I_{K}(\lambda_{+},\lambda_{0})$ <u>Accurately measured (ISTRA+,KTeV, NA48)</u> $\Delta |V_{us}| / |V_{us}| \cong 0.3\%$

Then ... just using inputs from Br,
$$I_{K}$$
 and δ the quantity $\left(\bigvee_{us} \cdot f_{+}^{K^{0}\pi^{-}}(0) \right)$ can be measured with small th. and exp. uncertainties.

MODEL ESTIMATES OF f₄

!!No Scale Ambiguity!!

19

f₄-Lattice QCD Challenge: Our Strategy

D.Becirevic, G.Isidori, V.Lubicz, G.Martinelli, F.Mescia, S.Simula, C.Tarantino, G.Villadoro. [NPB 705 (2005) 339, hep-ph/0403217; hep-lat/0411016]

VERY CHALLENGING:

A PRECISION OF O(1%) MUST BE REACHED ON THE LATTICE !!

- <u>1</u>. Evaluation of $f_0[q^2 = (M_K M_{\pi})^2]$ with very high precision (<1%).
- **<u>2.</u>** Extrapolation of $f_0(q_{max}^2)$ to $f_0(0)=f_+(0)$ estimating the slope λ_0
- <u>3</u>. We consider $\Delta f \equiv f_{+}(0) 1 f_{2}^{Q}$ (subtraction of the unphysical chiral logs) and <u>extrapolate</u> $(m_s/2 \le m_q \le m_s)$ to the physical meson masses: Finally, Δf will be our estimate of f_4

1) $f_0(q_{max}^2)$ - High precision measure (FNAL)

$$R \rightarrow \frac{\langle \pi | \overline{s} \gamma^{0} u | K \rangle \cdot \langle K | \overline{u} \gamma^{0} s | \pi \rangle}{\langle K | \overline{s} \gamma^{0} s | K \rangle \cdot \langle \pi | \overline{u} \gamma^{0} u | \pi \rangle} = f_{0}^{2} (q_{\max}^{2}) \frac{(M_{K} + M_{\pi})^{2}}{4M_{K}M_{\pi}}$$

$$\stackrel{1.0125}{1.0100} \cdot For M_{K} \rightarrow M_{\pi}, R \rightarrow 1 + O(M_{K}^{2} - M_{\pi}^{2})^{2} \cdot Stat. and Syst. errors scale as}{(M_{K}^{2} - M_{\pi}^{2})^{2}, like the physical SU(3) breaking effects.} \cdot Independent of Z_{V} and b_{V}$$

$$Stat. errors well below 1\%$$

Check of the theory: form factor vs experiment

The theoretical estimate of $f_+(0)$ can be checked comparing $f_+(q^2)$ vs experiment (Bijnens-Talavera ('03)):

<u>Chiral-QCD</u> also predicts similar values.

High precision measurements

ISTRA+ (hep-ex/0404030-K⁺_{β}): Polar fit not available but curvature visible for f₊(q²). λ_{+} and λ_{0} from a linear fit consistent with KTeV. NA48 (hep-ex/0410065-K^{L+}_{e3}): λ_{+} from a linear and a polar fit consistent with KTeV.

3) Chiral extrapolation

Comments on other routes to V_{us}

The dominant source of systematic error comes from the lattice calculation. VERY DIFFICULT TO REDUCE !!

Summary of V_{us} from from *K* decays :

V_{us}-CONCLUSIONS

• K_{β} decays offer a good opportunity to estimate V_{us} and test the CKM relation, thanks to Ademollo-Gatto Theorem.

Over the years, a great deal of activity has been devoted to reach higher precision and to reduce model-assumptions.

• We have presented a methodology to reach 1% accuracy for $f_+(0)$

• Our calculation of f_+ (0) is the first one obtained by using a non-perturbative method based only on QCD, albeit <u>in the quenched approximation (which can be in principle removed)</u>

Our final result, f₊ (0) = 0.960 ± 0.005_{stat} ± 0.007_{syst} is in good agreement with the estimate made by Leutwyler and Roos (PDG)

The most important step is to remove the quenched approximation
 Further steps: using lower masses(considering finite volume effects)

KAON PHYSICS HAS REPRESENTED SO FAR A HUGE SOURCE OF **INFORMATION FOR PARTICLE PHYSICS. NEW IMPORTANT RESULTS ARE EXPECTED IN THE FUTURE.** Grazie mille e Buon Lavoro

TH very clean : With improved

$$\begin{array}{l} & & \\ & &$$

by Buras CKM05