XVII IFAE Catania 30/03-2/04 2005

Fenomenologia della massa dei neutrini

Outline:

- Introduction
- Atmospheric Neutrinos
- Solar Neutrinos
- Absolute masses
- Summary

Antonio Marrone

Thanks to: G.L. Fogli, E. Lisi, A.M. Rotunno, A. Melchiorri, D. Montanino and A. Palazzo

Neutrino Mass Spectrum

Two squared mass differences

Hierarchy

 $\pm \Delta m^2$

 δ_{CP}

Phase

 $\Delta m^2 \equiv \Delta m^2_{Atm}$

 $\delta m^2 \equiv \delta m_{Sol}^2$

Only upper limits (~O(eV)) on the absolute mass scale

Atmospheric angle

 $(\theta_{12}, \theta_{23}, \theta_{13})$

Solar angle Atm. + Sol. + CHOOZ angle

The two Majorana phases and the absolute mass scale are not probed by oscillations

Neutrino Data and Experiments (... an incomplete list)

Oscillation experiments

Atmospheric neutrinos (SuperKamiokande, MACRO, Soudan2) Accelerators and Reactors (CHOOZ, KamLAND, K2K, LSND, Bugey, Palo Verde, ...) Solar Neutrinos Experiments (SuperKamiokande, SNO, Cl, GNO, Sage)

Absolute masses measurements

Beta decay (Mainz and Troitsk)

Neutrinoless double beta decay (Heidelberg-Moscow)

Astrophysics and Cosmology

High energy neutrinos CMB anisotropies Spectrum and Large Scale Structure Nucleosynthesis

Atmospheric Neutrino Oscillations

K2K spectrum (56 events)

K2K

 $\begin{array}{c} \mathsf{CHOOZ} \\ (\Delta m^2, \delta m^2, \theta_{13}, \theta_{12}) \end{array}$

SuperKamiokande

 $\begin{cases} \Delta m^2 \\ + \theta_{13} \end{cases}$

SK number of events ~15000

Super-K atmospheric neutrino data

0000

Note that here, as in the following, contours are drawn at $1, 2, 3 \sigma$ (1 d.o.f.)

Using 3D atmospheric neutrino fluxes and improved systematics gives slighty lower values for Δm^2

Solar parameter are there and must be used in the analysis: the effect is to shift the allowed region toward to the left, to lower values of $\sin^2 \theta_{23}$

The effect of solar parameters is very small at the best fit and the shift of the SG-MG e-like distribution is dominated by the systematics

nevertheless is able to shift the allowed region toward the first octant of θ_{23} (by inducing a $\Delta\chi^2\sim 2$)

Combination SK + K2K:

- slight increase of Δm^2 best-fit value
- reduced and more symmetrical errors on Δm^2

- but no effect on θ_{23}

SK alone prefers $\theta_{13} \sim 0$ but does not put a strong upper limit (contours in this figure would be open in θ_{13} without CHOOZ)

CHOOZ reactor experiment did not observe $\bar{\nu}_e$ disappearance driven by non-zero values of θ_{13}

effect of the hierachy and/or δ_{CP} is very small

Actually, systematics in SK overcome all these effects (that are of few % order)

SK is not able to distinguish between the different possibilities

Solar Neutrino Oscillations

Total number of solar (SK+SNO) neutrino events ~ 30000

$\begin{cases} \delta m^2 \\ + \theta_{13} \\ \theta_{12} \end{cases}$

SuperKamiokande

Cl & Ga

SNO

KamLAND

(258 events)

(a) Cl+Ga+SK (2001)

(b) + SNO I (2001-2002)

(c) + KamLAND (2002)

(d) + SNO II (2003)

Solar DATA alone determine the LMA solution after SNO I-II

The observed KamLAND spectrum suppression strongly reduce the allowed δm^2 range and definitively rules out the old small,low, quasi-vacuum and vacuum solutions

As in the atmospheric case $\theta_{13} \sim 0$ is preferred

Even if θ_{13} is free to be non-zero the allowed range of δm^2 and of θ_{12} are not significantly enlarged

Recent final SNO II salt phase DATA

Previous results confirmed

Changes:

CC/NC ratio increased: higher values of θ_{12} preferred

New systematics introduced, no significant reduction of the allowed regions

Oscillation analysis	$\Delta m^2 (10^{-5} \text{ eV}^2)$	$\tan^2 \theta$
SNO-only	$5.0^{+6.2}_{-1.8}$	$0.45^{+0.11}_{-0.10}$
Global solar	$6.5^{+4.4}_{-2.3}$	$0.45_{-0.08}^{+0.09}$
Solar plus KamLAND	$8.0^{+0.6}_{-0.4}$	$0.45^{+0.09}_{-0.07}$

Matter effects can be parametrized by a multiplicative constant a(a=0 no matter, a = 1 standard matter)

This amounts to change the MSW potential V-> aV

When a is considered as a free parameter the analysis prefers $a \sim 1$

a = 0 is completely excluded

Confirmation of MSW effect in the Sun

Absolute Masses

Three "observables"

$$\begin{split} m_{\beta} &= \sqrt{c_{13}^2 c_{12}^2 m_1^2 + c_{13}^2 s_{12}^2 m_2^2 + s_{13}^2 m_3^2} & \text{Mainz \& Troitsk} \\ m_{\beta\beta} &= |c_{13}^2 c_{12}^2 m_1 + c_{13}^2 s_{12}^2 m_2 e^{i\phi_2} + s_{13}^2 m_3 e^{i\phi_3}| & 0\nu 2\beta \\ \Sigma &= m_1 + m_2 + m_3 & \text{Cosmology} \end{split}$$

8 independent parameters: three angles, three masses and two phases $\chi^2_{Global} = \chi^2_{osc}(\Delta m^2, \delta m^2, \theta_{12}, \theta_{13}, \theta_{23}) + \chi^2_{\beta}(m_{\beta}) + \chi^2_{\beta\beta}(m_{\beta\beta}) + \chi^2_{cos}(\Sigma)$

We marginalize over 5 osc. $(\Delta m^2, \delta m^2, \theta_{12}, \theta_{13}, \theta_{23})$ parameter $(\Sigma, m_\beta, m_{\beta\beta})$

and use in the analysis

Global results of oscillation phenomenology as input to the absolute mass analysis

Allowed region for each oscillation parameter after marginalization over the others

Oscillation analysis constrains the $(\Sigma, m_{\beta}, m_{\beta\beta})$ parameter space

Above 0.5 eV Normal and Inverted hierarchy are not distinguishable

Degeneracy in $m_{\beta\beta}$ induced by the two Majorana phases

Limits from cosmology (vertical dashed line) more stringent than *negative* limits from beta decay (horizontal dashed line)

> To probe the nature of the spectrum sensitivity of cosmological data should be at the level of less than 0.3 eV

Limits from "cosmology" of order ~1 eV The inclusion of Ly α Forest in SDSS

improves the constraints on Σ

The inclusion of $Ly \alpha$ Forest allows to get a sub-eV limit on the sum of neutrino masses

The cosmological upper limit on the sum of the neutrino masses "induces" an upper limit on $m_{\beta\beta}$ that is in contrast with the Klapdor claim

"Small" allowed regions if the Klapdor claim of a positive signal in the Heidelberg-Moscow experiment is accepted but there is clearly a tension with the cosmological bound on Σ

SUMMARY

mass & mixings

 $(\Delta m^2, \theta_{23})$ SK + K2K $\nu_\mu \leftrightarrow \nu_\tau$

3 flavor neutrino oscillations well established \rightarrow

 $(\delta m^2, heta_{12})$ (LMA) Solar + KamLAND $heta_{13}$ only upper limit

No information on Hierarchy and δ_{CP}

SNO gives direct evidence of solar neutrino flavor transitions

MSW effect in the Sun

Absolute masses \rightarrow Limits at the level of ~1 eV

Combined analysis of oscillatory and non-oscillatory data:

Difficult to test the nature of the spectrum but upcoming experiments have great discovery potential