# Solar neutrinos: present and future

#### Aldo Ianni INFN, Gran Sasso Laboratory

IFAE, Catania Mar. 30, 2005

# Outline of the talk

- Solar neutrinos
- Present status
- Upcoming new measurements
- Ideas for the future
- Outlook

The Sun: a huge close by source of neutrinos and a UNIQUE opportunities for neutrino physics and astrophysics



4p + 2e<sup>-</sup> → α + 2ν<sub>e</sub> + Q (Q=26.7 MeV)  $I_v = 2L/Q$  (L=2.4 10<sup>39</sup> MeV/s)  $φ_v = 6.4 \ 10^{10} \text{ cm}^{-2} \text{ s}^{-1}$  (on Earth)



# **Observations of solar neutrinos**

| Experiment       | Туре     | Thres. (MeV) |       | Started | Status |          |
|------------------|----------|--------------|-------|---------|--------|----------|
|                  |          | ES           | CC    | NC      |        |          |
| Homestake(Cl-Ar) | Radioch. |              | 0.814 |         | 1968   | stopped  |
| Kamiokande       | Cherenk. | 7.0          |       |         | 1985   | stopped  |
| SAGE             | Radioch. |              | 0.233 |         | 1990   | running  |
| GALLEX           | Radioch. |              | 0.233 |         | 1991   | stopped  |
| Super-Kamiokande | Cherenk. | 5.0          |       |         | 1996   | running* |
| GNO              | Radioch. |              | 0.233 |         | 1999   | stopped  |
| SNO              | Cherenk. | 5.0          | 5.0   | 5.0     | 1999   | running  |

\*stop for full reconstruction work after 2001 incident in Nov. 2005, resume activity in Jun. 2006

## Solar neutrinos: spectrum on Earth



99.994% of solar neutrino spectrum is NOT measured yet in real-time mode

IFAE, Catania Mar. 30, 2005

## Solar neutrinos in real time at present

# SuperKamiokande



# SuperKamiokande

- 50kton of H<sub>2</sub>O [22.5kton FV]
- 1000 underground
- Inner Detector: 11,146 PMTs 50cm with 40% coverage
- Outer Detector: 1,885 PMTs 20cm







#### 1000 tonnes D<sub>2</sub>O

12 m diameter Acrylic Vessel

18 m diameter support structure; 9500 PMTs (~60% photocathode coverage)

1700 tonnes inner shielding  $H_2O$ 

5300 tonnes outer shielding  $H_2O$ 

**Urylon liner radon seal** 

depth: 2092 m (~6010 m.w.e.) ~70 μ/day

# Sudbury Neutrino Observatory



#### **Neutrino Reactions in SNO**



- Q = 1.445 MeV
- good measurement of  $v_e$  energy spectrum
- some directional sensitivity  $\propto (-1/3 \cos \theta)$
- $v_e$  only



- Q = 2.22 MeV
- measures total  $^8B\,\nu$  flux from the Sun
- equal cross section for all  $\nu$  types

$$\textbf{ES} \quad \boldsymbol{\nu}_x + \mathbf{e}^- \to \boldsymbol{\nu}_x + \mathbf{e}^-$$

- low statistics
- mainly sensitive to  $\nu_e,$  some  $\nu_\mu$  and  $\nu_\tau$
- strong directional sensitivity





# Reults on solar neutrino rates



# Neutrino oscillations framework



1/





detector

$$\begin{pmatrix} \boldsymbol{v}_e \\ \boldsymbol{v}_\mu \\ \boldsymbol{v}_\tau \end{pmatrix} = \mathbf{U} \cdot \begin{pmatrix} \boldsymbol{v}_1 \\ \boldsymbol{v}_2 \\ \boldsymbol{v}_3 \end{pmatrix} = \begin{pmatrix} \boldsymbol{U}_{e1} & \boldsymbol{U}_{e2} & \boldsymbol{U}_{e3} \\ \boldsymbol{U}_{\mu 1} & \boldsymbol{U}_{\mu 2} & \boldsymbol{U}_{\mu 3} \\ \boldsymbol{U}_{\tau 1} & \boldsymbol{U}_{\tau 2} & \boldsymbol{U}_{\tau 3} \end{pmatrix} \cdot \begin{pmatrix} \boldsymbol{v}_1 \\ \boldsymbol{v}_2 \\ \boldsymbol{v}_3 \end{pmatrix}$$

$$\begin{split} |U_{e1}| = &\cos\theta_{12} \cos\theta_{13} \\ |U_{e2}| = &\sin\theta_{12} \cos\theta_{13} \\ |U_{e3}| = &\sin\theta_{13} \end{split}$$

 $\begin{aligned} |U_{\mu3}| = \sin\theta_{23}\cos\theta_{13} \\ |U_{\tau3}| = \cos\theta_{23}\cos\theta_{13} \end{aligned}$ 

Oscillations in terms of three angles and two mass related parameters:

 $(\theta_{12}, \theta_{13}, \theta_{23}, \delta m^2 = m_2^2 - m_1^2, \Delta m^2 = m_2^2 - m_1^2)$ 

A. lanni

#### Survival probability and matter-vacuum transition



IFAE, Catania Mar. 30, 2005

#### CC and ES experiments at low energy

In order to measure the total flux of active neutrinos both ES and CC Channels need to be explored.

Room for sterile neutrino search with precise pp measurement.



IFAE, Catania Mar. 30, 2005

#### Low energy solar neutrinos ... why?

**Physics and astrophysics point of view:** 

```
□Test how the Sun shines. Input parameters (Z/X, opacity, …) of SSM are correct?
```

□How much energy from CNO (1.5% from SSM)? Any other energy source?

□ Photon luminosity versus Neutrino luminosity

**□**High precision neutrino flux and annual modulation determination. High precision mixing angle ( $\theta_{12}$ ) determination [mainly by meas. pp].

**Test of vacuum-matter transition (energy dependence of v oscillations).** 

□ New physics (neutrino magnetic moment, NSI, new vacuum osc. [Vissani,03])

**CPT** test by comparison with terrestrial anti-neutrino experiments

## Solar neutrinos ... what next?

- Low energy solar neutrinos ... a MUST!
- Further step asks for BIG experimental effort (see coming slides)
- Multi-purpose detector would be a good choice
- A megaton water Cerenkov for high energies and precise measurements with B8 neutrinos ... hep search
- Low energy (<1MeV) asks for scintillation techniques (upcoming experiments)
- For low energy on the road liquid noble gases and metal loaded organic scintillators

## Low energy solar neutrinos ... how?

Organic liquid scintillators:

- 1.  $\rho \sim 1g/cm^3$  (efficient self shielding),  $\sim 10^4$  photons/MeV, 5% energy resolution @ 1MeV, sigma ~ 10cm @ 1 MeV for vertex reconstruction
- 2. Expected 1.3 ev/day/ton for pp and 0.5 for <sup>7</sup>Be in full energy range
- 3. 10tons target mass for pp gives about 10 counts/day
- 4. ONLY ES channel (rely on detection of single electron)
- 5.  ${}^{14}C (\beta \text{ w}/156\text{keV})$  limits low energy sensitivity to only <sup>7</sup>Be with achieved  ${}^{14}C/{}^{12}C \sim 10^{-18}$  (~0.2 Bq/ton background below end-point)
- 6. <sup>238</sup>U, <sup>232</sup>Th, <sup>40</sup>K, <sup>85</sup>Kr, <sup>39</sup>Ar, <sup>210</sup>Pb sources of important background
- 7. Needed U,Th <  $1\mu$ Bq/ton to get S/B>1 ... possible!
- 8. Needed ~0.5  $\mu$ Bq(Kr,Ar)/m<sup>3</sup> of N<sub>2</sub> ... possible!
- 9. Needed  $^{210}$ Pb < 1 $\mu$ Bq/ton ... rely on distillation of scintillator!
- 10. Deep location to measure pep and avoid cosmogenic <sup>11</sup>C background: expected 0.03 pep/day/ton vs 0.15 <sup>11</sup>C/day/ton @ Gran Sasso depth; a factor 100 less @ SNO!

## Low energy solar neutrinos ... how?

Metal loaded organic liquid scintillators:

- 1. Goal: CC real time detection
- 2. Method: electron-capture reaction
- 3. Needed either a transition to an isomeric excited state or a transition to an unstable final state in order to have a good tagging
- 4. Needed a low (<0.4MeV) threshold energy to measure pp and Be neutrinos
- 5. Possible isotopes (there are only a few!): <sup>115</sup>In, <sup>100</sup>Mo, <sup>160</sup>Gd
- 6. Needed a stable loaded scintillator with large scattering length of scintillation light
- 7. Due to strong tagging less stringet requirements on radiopurity
- 8. With <sup>115</sup>In expected 0.07 counts/ton/day for Be and 0.3 for pp

## Low energy solar neutrinos ... how?

Noble gases liquid scintillators:

- 1.  $\rho \sim 1-3g/cm^3$  (efficient self shielding),  $\sim 1-4 \times 10^4$  photons/MeV
- 2. Under study Xe(boiling point @ 165K) and Ne (@ 27K)
- 3. Expected 1 ev/day/ton for pp and 0.4 for <sup>7</sup>Be in full energy range with Xe
- 4. 10tons target mass for pp gives about 10 counts/day
- 5. ONLY ES channel
- 6. No problem with  $^{14}C!$
- 7. <sup>85</sup>Kr, <sup>39</sup>Ar important background
- 8. 1ppb Kr in Xe achieved with distillation!
- 9. Needed R&D for PMTs working at low temperatures
- 10. Problems with  $\beta\beta$  decays using Xe

## Upcoming next generation experiments

- Borexino
- KamLAND
- SNO+(?)

### Borexino at Gran Sasso Laboratory



#### Nylon Vessels installation



#### KamLAND at Kamioka

18m in diameter Kamiokande H<sub>2</sub>O tank
3000m<sup>3</sup> stainless steel containment vessel
13m in diameter nylon vessel (1000ton of liquid scintillator)
Liquid scintillator = 80%PC + 20%dodecane + 1.52 g/l PPO
1325 17" + 554 20" PMTs, 34% coverage
Energy resolution: 6.3% @ 1MeV



Outstanding physics results achieved with reactors neutrinos! To move to solar neutrinos major upgrade of fluid handling and purification systems required. Works in progress! New phase foreseen in 2007!

#### SNO+: a liquid scintillator for the SNO detector

- after physics with heavy water completed (>2006)
- main goals: solar pep + geo-neutrinos
- with pep observe rise in survival probability + test solar model
- foreseen target mass of about 600tons
- expected ~3000 pep events/year/600ton (>0.8MeV)
- low cosmogenic <sup>11</sup>C background due to deep site
- U, Th not a problem if KamLAND purity achieved
- Ar, Kr and Pb at lower energies are not a problem

## Future low energy solar neutrino experiments\*

| Experiment | Detection channel                                                                      | target                                    | Expected signal<br>counts/year for<br>pp(Be) |
|------------|----------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------|
| LENS       | CC channel<br><sup>115</sup> In+v <sub>e</sub> ->e⁻+ <sup>115</sup> Sn,γ               | 20ton In-loaded scintillator cells        | 2190(511)                                    |
| MOON       | CC channel<br><sup>100</sup> Mo+ν <sub>e</sub> ->e <sup>-</sup> + <sup>100</sup> Tc(β) | 3.3ton Mo foils + plastic<br>scintillator | 240(77)                                      |
| XMASS      | Elastic Scattering                                                                     | 10ton liquid Xe                           | 2373(1241) with 50keV thres.                 |
| CLEAN      | Elastic Scattering                                                                     | 10ton liquid Ne                           | 2869(1518) with 50keV thres.                 |

\*only mentioned those which have a stronger R&D in progress!

## LENS(Low Energy Neutrino Spectroscopy)

- Scintillator loaded(8%) with <sup>115</sup>In (96% natural);
   20tons In mass and 400-600tons scintillator mass
- CC measurement of pp and Be solar neutrinos



 Background from beta decay + bremssstrahlung can mimic neutrino signal; removed by a modular structure with In-free cells around In-loaded cells

#### XMASS

Main experimental idea is based on self shielding and distillation. Plan: from 100kg prototype to 1ton

and eventually to 10tons

•42,000 photons/MeV (@173nm)
•360 p.e. @50 keV r
•Longest isotope <sup>127</sup>Xe(36.4days)
•Problem of <sup>85</sup>Kr solved by distillation thanks to difference of boiling points (Xe:165K; Kr:120K)@1atm
From 300ppb Kr/Xe to <5ppt Kr/Xe</li>
•U and Th to be reduced by a factor of 30

#### XMASS prototype detector

30 litter liquid Xenon (~100kg)
 Oxygen free copper: (31cm)<sup>3</sup>
 54 of low-BG 2-inch PMT
 Photo coverage ~16%
 MgF<sub>2</sub> window
 0.6 p.e. / keV
 Polyethylene (15cm)
 Boric acid (5cm)
 Lead (15cm)
 EVOH sheets (30mm)
 OFC (5cm)
 Rn free air (~3mBq/m<sup>3</sup>)

## Outlook

Soon (~2yr) Borexino & KamLAND will perform the first low energy (<1MeV) measurement of solar neutrinos. This measurement can open new opportunities:

- Precision test of solar model
- Test matter-vacuum transition
- Test sub-leading effects
- Test CPT

New projects underway (<u>multi-purpose detectors</u>) will further improve opportunities with pp measurement:

- best way to search for sterile neutrinos (needed CC+ES meas!)
- Precise oscillation parameters determination
- Yet, hard experimental work needed to move the new projects from being nice ideas to real experiments

Experimental approach for detecting low energy solar neutrinos [first generation]

- From Cerenkov to scintillator detectors
- Elastic Scattering or Absorption
- High level of intrinsic radiopurity:
- In organic scintillators <sup>238</sup>U and <sup>232</sup>Th @ 10<sup>-16</sup> g/g

(~2 events/day/ton in [0.25,0.8]MeV detection window for recoil electrons for ES; with PSD and subtraction of correlated events 0.2events/day/ton)

- Low <sup>14</sup>C content ( $^{14}C/^{12}C\sim 10^{-18}$ ): it allows to set a threshold at about 0.2MeV
- Deep underground to avoid cosmogenic background



- •Detector consists of modules of Mo films and fiber/plate Scintillators
- •Low threshold at 0.17MeV
- •<sup>100</sup>Tc decays with  $\tau$ =15.8 s
- •Tracking freseen to reduce background ( $\beta\beta$ )
- •Position read-out by fibers (2.2m x 2.2m x 0.4mm)
- •Energy read-out by scintillators (sigma = 5.5%)
- •Total 4 units ofr 3.3tons target mass
- •One unit is 2.2m x 2.2m x 2m for 260 modules

## **CLEAN**

<u>Goal</u>: perform neutrino ES+neutrino nucleus scattering with low threshold
Expected ~3000 pp events/year/10ton (>50keV)

•PMTs equipped with a quartz/acrylic window

•Each window coated with a layer of organic material to convert 80nm scint. Ne light to the visible

•Use Ne outer layer to shield against gamma rays an neutrons

Ne has no long-lived radioactive isotopes
Ne has low binding energy to variety of surfaces

•Density =  $1.3 \text{ g/cm}^3$ 



#### PMTs tested in LNe Purification R&D in progress

Pulse shape analysis for different radiation types in progress

# Solar neutrinos in the framework of neutrino oscillations



Courtesy of D. Montanino, hep-ph/0408045

IFAE, Catania Mar. 30, 2005