Motivations and strategies for detecting h — aa at
hadron colliders
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The NMSSM and p-solvable models I

A p-solvable model is any model which promotes the u term to a
field, such that the vacuum expectation value of a field dynamically
generates pu = A(S).

W = ASHyH  + k5> (1)

Such models may involve extra discrete or gauge symmetries to forbid
the canonical p term.

String-derived models never have a u term since masses appearing in
the superpotential must be O(Msy).

The x term may be absent, in favor of Planck-suppressed Kahler
operators, and a large discrete symmetry. (a.k.a. MNSSM)

We choose the NMSSM as a prototype of this class of models.



U(1) symmetries give a small My I

W = ASHyH  + k5> Vot = NMN\SHuHy + £ARS> (2)

QE, =1 Qu, =1 Rs = —2 (3)

This is a Peccei-Quinn symmetry. Superpotential A term is symmet-
ric, soft M; are symmetric, Yukawa’'s are symmetric. Broken explicitly
by k and Ax. Symmetry is approximate in kK < 1, Ax, < Mgygy limit.
[Miller, Moretti, Nevzorov, hep-ph/0501139 (among others)]

Qp, =1 Qp,=1 Qs =1 (4)
This is an R-symmetry (not respected by supersymmetry). Broken by
soft SUSY breaking trilinear terms Ay, Ax. Symmetry is approximate
in KAk, ANA) K€ Mgy limit. [Matchev, Cheng, hep-ph/0008192]
In both cases, Ay is the PNGB of the broken symmetry.

Both also also broken by radiative corrections.



The gaugino-mediated connection I

In gaugino-mediated SUSY breaking, gauginos get soft masses Mgrsy
first, and transmit SUSY Dbreaking to the rest of the theory at 1-loop.

H, and H,; are charged under SU(2);, and U(1)y, therefore we expect
A)\ ~ MSUSY/47T'

S is uncharged under SM gauge symmetries. Therefore we expect
A,{ ~ MSUSY/167T2'



Constraints on a light A I

There are numerous constraints on a very light A (often called the
Axion when k = 0). Most are for very light A. For instance microwave
cavity searches for the axion that solves the Strong CP problem.
Concentrate on the region 2M; < M4 < M~

T — v+ X spectrum shows no deviations. (CLEO)

— Experimental triggering regires Ey > 500 MeV. (no constraint on
8.95GeV < My < 9.46GeV)

T — v 4 invisible shows no deviations. (CLEO)
— Measurement requires E, > 1 GeV.

ISR spectrum also makes this measurement insensitive for M4 near
M.



Constraints on a light A (ctd.) I

eTe™ — ~ + invisible shows no deviations. (LEP)

— Aee coupling is extremely small.

K — mA is a strong constraint for M4 < 400MeV.

In all cases, couplings to the SM are suppressed by cosf,. cosf, can
be small at the same time that h — AA is large! Unless a neutralino

is also light, A — SM is also dominant!

H — AA — wnwvistble is no different phenomenologically than H —
invistble, and can be discovered in the W W fusion channel at the
LHC.
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Monte Carlo support for U(1)p
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BR(H — AA) I

hy—~h h; Branching Ratio
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Fine-tuning I
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Fine-tuning I

tanf=10, M, »3(m;)=100,200,300 GeV
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Electroweak Baryogenesis I

In MSSM:
e [ wo-loop stop effects required to enhance phase transition.
e Requires 105 < My < 165 and 110 < M}, < 115. [Quiros hep-ph/0101230]

NMSSM can easily get strong first-order phase transition without
light stop, due to new trilinear soft SUSY terms.



All-leptonic Tevatron search I

All-lepton decays, BR=2.2%, My = 120, M4 = 9.
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visible M_H from all-lepton decays — 597
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One-muon Tevatron search |

One muon decay, BR=57%, My = 120, M4 = 9.

— . . . one mu M H

visible M H requiring at least one muonic decay Entriss 5708

= Mean 78.11
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p Pr in Tevatron search I

Muon PTr MH = 120, MA = 0.

Muon p_T when requiring one tau to decay to a muon mu P T
Entries 7628
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O0R in Tevatron search |

smaller 6 — R between tau’s from the same A.

My =120, M4 =9 My =85, My=29

| smaller delta-R between visible tau decay products coming from one a litte_delta-R,, ,, | smaller delta-R between visible tau decay products coming from one a litte_delta-R,, ,,
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Suggested Benchmarks I

Based on properties of the experimental signatures (rather than pa-
rameter space), I suggest:

My = 4: A this light must have significant singlet mixing, cannot
be 2HDM or CPX. My, = 2M; 4+ € so that tau’s merge, and are not
isolated.

My = 9: Escapes direct B-factory searches, h — 77 still dominant.

My = 85: Lightest My you can reasonably get in the NMSSM with
reasonable coupling to the Z.

My = 120: H can have SM coupling to Z, A evades LEP and B-

factory detection, and need not be singlet. (e.g. covers CPX and
any other model with a light A that is not singlet)

Mg = 150: Largest My reasonable in a SUSY model,



Conclusions |

Mgrrsy > My > M4 is a technically natural hierarchy.
A light, singlet A is almost completely unconstrained.

A light, non-singlet A is constrained, but still allowed, especially if
My 2 8 GeV.

H — AA can have smaller fine tuning and lower higgs mass than the
MSSM.

It is important that H — 47 be carried out at the Tevatron, since
LHC may have great difficulty triggering on this.

Clever jet/di-tau separation must be developed.



The Future: Leave No Stone Unturned I

e Develop Monte-Carlos (PYTHIA CARDS file for each point?)

e Develop effective theories which encompass many models (may
not be necessary since 2HDM + Z'/W’ + SM may cover all bses)

e Choose benchmark points based on:
— where significant experimental characteristics change
— where background changes
— leveraging advantages of different colliders (v~, ILC, uu)
— ability to differentiate individual models

— Secondary benchmark points (e.g. if found Z’, go to “Measure
Triple Gauge Coupling”, sec. 4.3.7).



Bad Example: Mg max.



