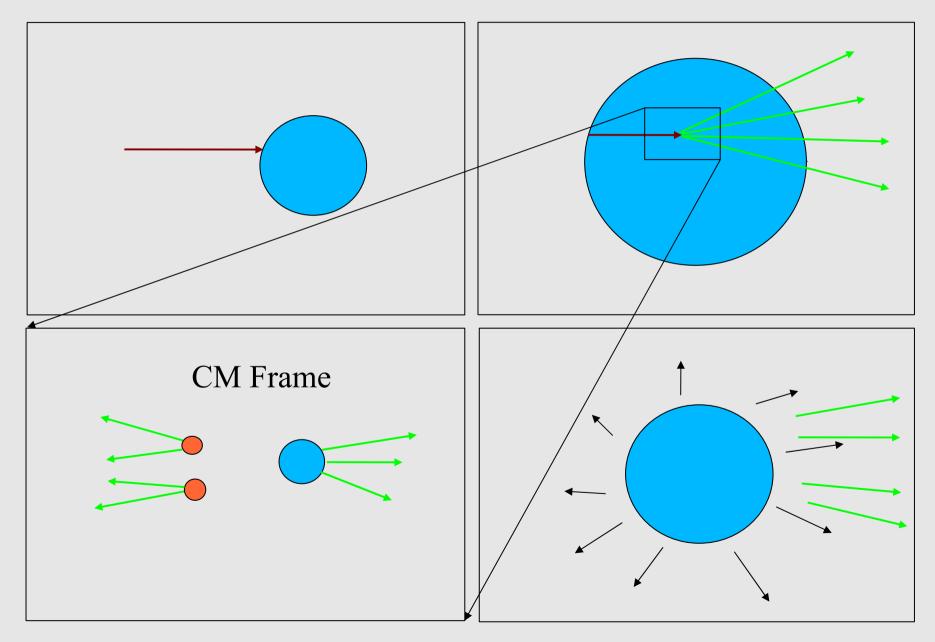
Hadronic Physics Models

Geant4 Users' Tutorial at CERN 25-27 May 2005 Dennis Wright (SLAC)

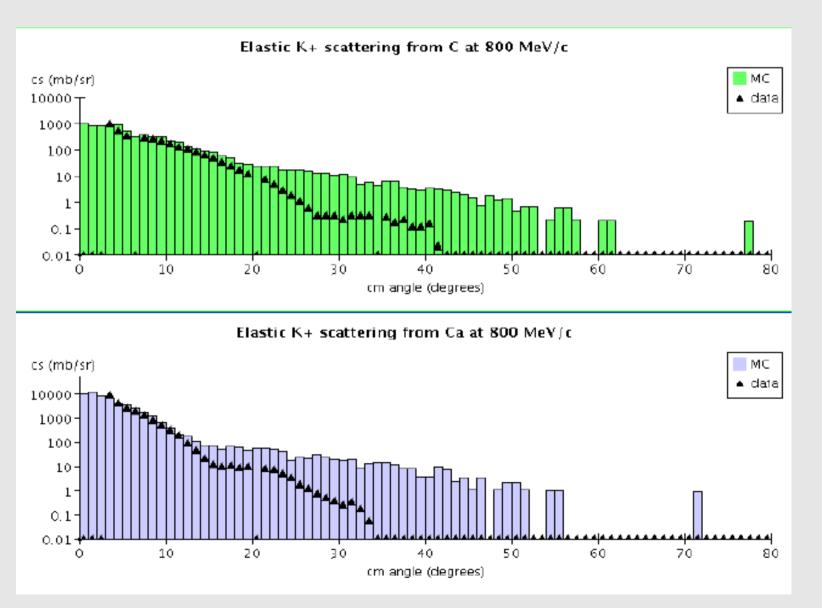

Outline

- Parameterized models
 - high energy
 - low energy
- Bertini cascade model
- High precision neutron models
- Photo- and electro-nuclear models
- Isotope production

Parameterized Models

- Two models available:
 - Low Energy Parameterized (LEP) for <20 GeV
 - High Energy Parameterized (HEP) for > 20 GeV
 - LEP and HEP each refer to a collection of models, one for each particle type
- Both derived from GHEISHA model used in Geant3
- Core code:
 - hadron fragmentation
 - cluster formation and fragmentation
 - nuclear de-excitation

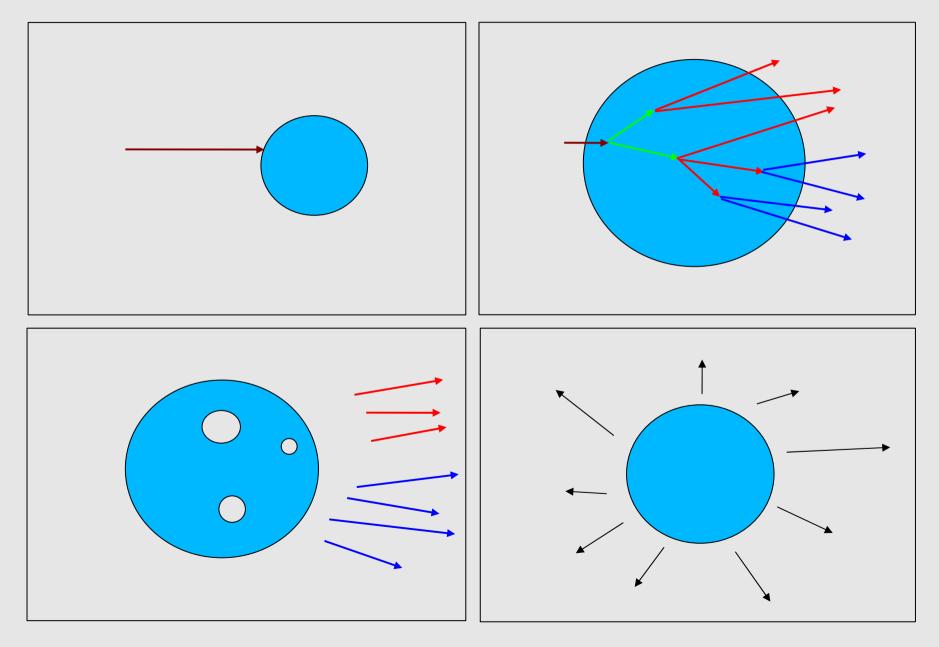
LEP, HEP (Comic Book Version)


LEP, HEP models (text version)

- Modeling sequence:
 - initial interaction of hadron with nucleon in nucleus
 - highly excited hadron is fragmented into more hadrons
 - particles from initial interaction divided into forward and backward clusters in CM
 - another cluster of backward going nucleons added to account for intra-nuclear cascade
 - clusters are decayed into pions and nucleons
 - remnant nucleus is de-excited by emission of p, n, d, t, alpha

Using the LEP and HEP models

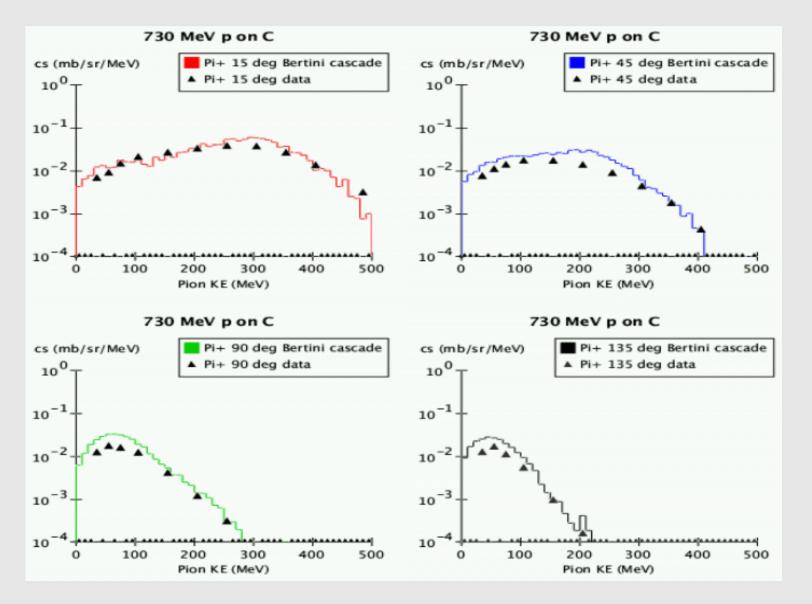
- The LEP and HEP models are valid for p, n, π , K, Λ , Σ , Ξ , Ω , α , t, d
 - LEP valid for incident energies of $0 \sim 30 \text{ GeV}$
 - HEP valid for incident energies of $\sim 10 \text{ GeV} 15 \text{ TeV}$
- Invocation sequence
 - G4ProtonInelasticProcess* pproc = new G4ProtonInelasticProcess();
 G4LEProtonInelastic* LEproton = new G4LEProtonInelastic();
 pproc -> RegisterMe(LEproton);
 G4HEProtonInelastic* HEproton = new G4HEProtonInelastic();
 HEproton -> SetMinEnergy(20*GeV);
 pproc -> RegisterMe(HEproton);
 proton_manager -> AddDiscreteProcess(pproc);


Validation of LEP, HEP Models

Bertini Cascade Model

- The Bertini model is a classical cascade:
 - it is a solution to the Boltzman equation on average
 - no scattering matrix calculated
 - can be traced back to some of the earliest codes (1960s)
- Core code:
 - elementary particle collider: uses free-space cross sections to generate secondaries
 - cascade in nuclear medium
 - pre-equilibrium and equilibrium decay of residual nucleus
 - detailed 3-D model of nucleus

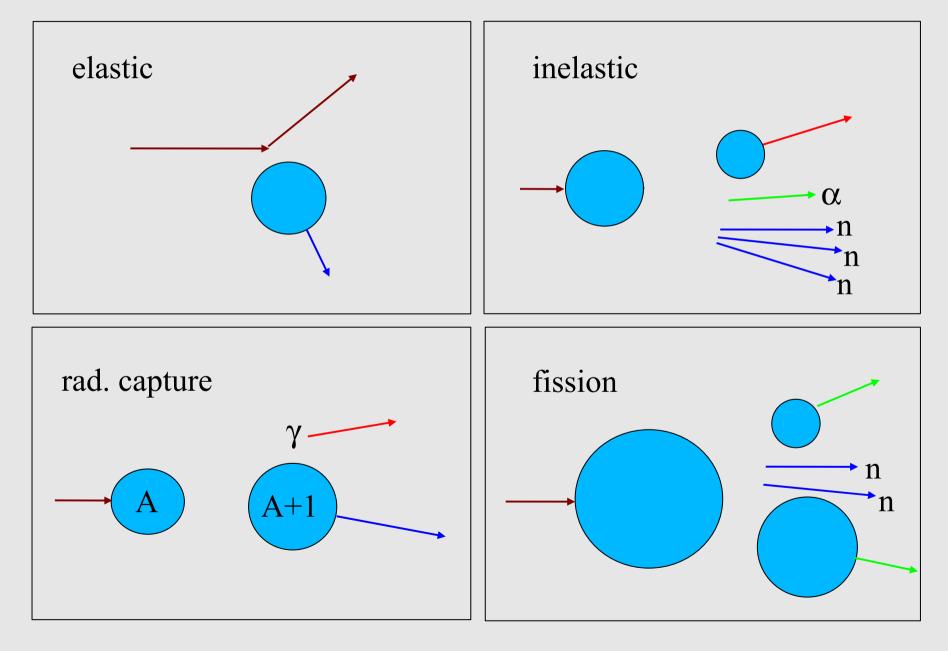
Bertini Cascade (Comic Book Version)


Bertini Cascade (text version)

- Modeling sequence:
 - incident particle penetrates nucleus, is propagated in a density-dependent nuclear potential
 - all hadron-nucleon interactions based on free-space cross sections, angular distributions, but no interaction if Pauli exclusion not obeyed
 - each secondary from initial interaction is propagated in nuclear potential until it interacts or leaves nucleus
 - during the cascade, particle-hole exciton states are collected
 - pre-equilibrium decay occurs using exciton states
 - next, nuclear breakup, evaporation, or fission models

Using the Bertini Cascade

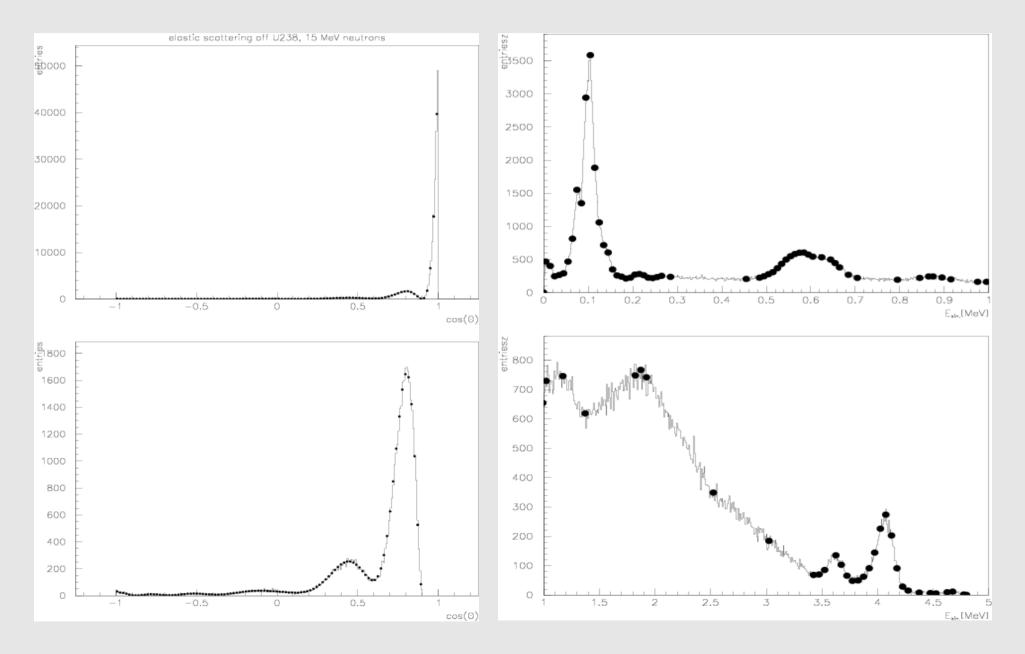
- In Geant4 the Bertini model is currently used for p, n and π
 - valid for incident energies of 0 10 GeV
 - may be extended to 15 GeV when new validation data are available
 - currently being extended to kaons and hyperons
- Invocation sequence
 - G4CascadeInterface* bertini = new G4CascadeInterface();
 G4ProtonInelasticProcess* pproc = new G4ProtonInelasticProcess();
 pproc -> RegisterMe(bertini);
 proton_manager -> AddDiscreteProcess(pproc);


Validation of the Bertini Cascade

High Precision Neutron Model

- Data-driven model
 - little theoretical input
 - cross sections, angular distributions, fission yields, photon emission probabilities, etc. taken from evaluated neutron data libraries
- Intended for low energy neutrons (< 20 MeV)
 - OK for thermal neutrons as well
 - elastic, inelastic scattering, neutron-induced fission and radiative capture models available
- Core code:
 - G4NDL neutron data library
 - interpolaters

HP Neutrons (Comic Book Version)


High Precision Neutron Model

- Modeling:
 - elastic scattering: get final state by looking up differential cross section or Legendre coefficients to get angular distributions
 - radiative capture: look up photon multiplicities or production cross sections, then sample from discrete and continuous energy spectra, and tabulated angular distributions
 - inelastic scattering: use cross section data to choose from among 35 final states of up to four particles
 - fission: use tabulated neutron yields and angular distribution parameters, several options for generating final state neutrons and fission fragments

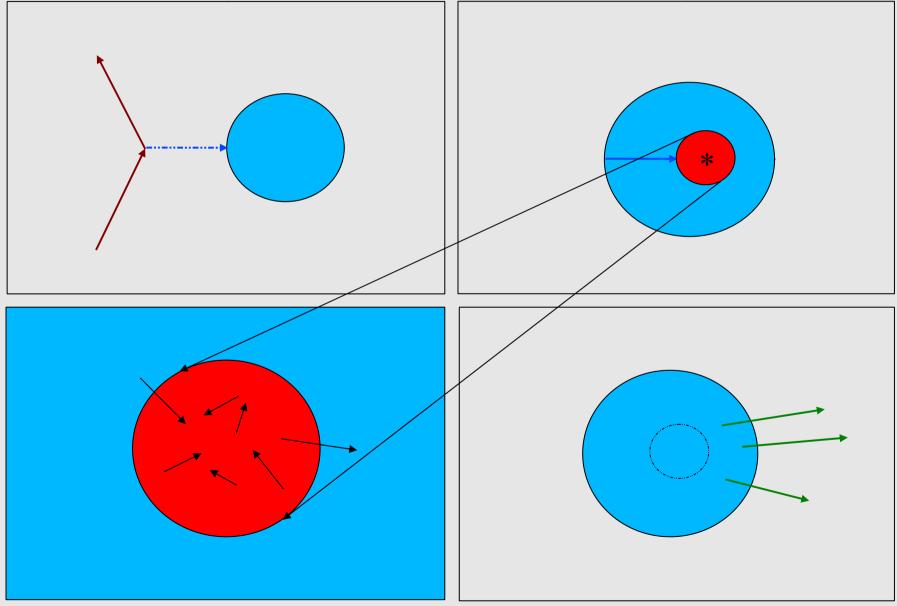
Using the HP Neutron Model

- First set environment variable to point to data library:
 - setenv NeutronHPCrossSections somedir/G4NDL3.7
 - G4NDL3.7 must first be downloaded from Geant4 distribution page into your directory
- Invocation sequence
 - G4HadronElasticProcess* nelproc = new G4HadronElasticProcess();
 G4NeutronHPElasticData* neldata = new G4NeutronHPElasticData();
 G4NeutronHPElastic* nelmodel = new G4NeutronHPElastic(); nelproc
 -> RegisterMe(nelmodel); nelproc ->
 AddDataSet(neldata); neutron_manager ->
 AddDiscreteProcess(nelproc);
 - repeat for inelastic neutron scattering, neutron-induced fission and radiative neutron capture

Validation of the HP Neutron Model

Isotope Production Models

- Default model
 - isotope produced = residual nucleus of any reaction
 - produced isotope is tracked
- Neutron-induced production:
 - G4NeutronIsotopeProduction
 - valid for $E_n < 100 MeV$
 - requires G4NDL and NeutronHPCrossSections env. var. to be set
 - uses G4Track object to get surrounding material, then nucleus, then production cross sections


Using the Isotope Production Models

- Default production model:
 - Disable: process -> DisableIsotopeProductionGlobally();
 - Enable: process -> EnableIsotopeProductionGlobally();
- Neutron-induced production model:
 - setenv NeutronHPCrossSections somedir/G4NDL3.7

Electro- and Photo-nuclear Models

- Hybrid models: both electromagnetic and hadronic
 - use parameterization of measured photon cross sections
 - several theoretical models (one EM, two hadronic)
- Core code:
 - CHIPS (Chiral Invariant Phase Space) model
 - quark-gluon string model
 - method of equivalent photons (for incident e+/e-)
- Valid for e^- , e^+ , γ all energies up to 100 TeV
 - CHIPS below 3.5 GeV
 - quark-gluon string model above 3 GeV (VDM)

Electro-nuclear model (below 3 GeV) (Comic Book Version)

Electro-nuclear model (text version)

- Modeling sequence:
 - virtual photon from e+/e- converted to real photon by method of equivalent photons
 - real photon cross section determines interaction rate
 - below 3.5 GeV:
 - real photon interacts inside nuclear matter, creates quasmon (generalized hadron in CHIPS model)
 - quasmon decays by quark fusion
 - above 3 GeV, photon treated as a hadron:
 - quark-gluon string formed and decayed
 - residual nucleus is de-excited

Using the Electro- and Photo-Nuclear Models

- Electro-nuclear model (for e+, e- only):
 - G4ElectronNuclearProcess* enproc = new G4ElectronNuclearProcess(); G4ElectroNuclearReaction* enModel = new G4ElectroNuclearReaction(); enproc -> RegisterMe(enModel); electron_manager -> AddDiscreteProcess(enproc);
- Photo-nuclear model (γ) :
 - G4PhotoNuclearProcess* gnproc = new G4PhotoNuclearProcess();
 G4GammaNuclearReaction* gnmodel =
 new G4GammaNuclearReaction(); gnmodel ->
 SetMaxEnergy(3.5*GeV); gnproc ->
 RegisterMe(gnmodel); gamma_manager ->
 AddDiscreteProcess(gnproc);

Validation of the Photo-nuclear/CHIPS Model

Summary/Recommendations (1)

- LEP/HEP are the simplest and most versatile
 - all energies, all (long-lived) hadrons
 - use if no other model available
 - also the fastest
 - good for general purpose simulation where hadronic physics is not the main focus
- Bertini cascade is better for p,n,π
 - $\sim 8X$ slower than LEP
 - only valid below 10 GeV
 - alternative is Binary cascade
 - useful for calorimetry and medium energy experiments

Summary/Recommendations (2)

- High precision neutron models are the most accurate
 - but only for neutrons below 20 MeV
 - good for studying accelerator background, shielding, dosimetry, medical etc.
- Electro- and gamma-nuclear models
 - hybrid hadronic/EM
 - only model for hadronic interaction of e+, e-, γ below 3.5 GeV
- Isotope production
 - useful for shielding, space radiation, space electronics, medical studies