

Geant4 User Interface

- Simulation of particle transport and interaction in Geant4 is under control of Geant4 kernel
- There are a variety of possibilities for user to get intermediate information and to score results of simulation
 - User actions
 - Sensitive detector
 - Physics processes

★ G4UserRunAction

- Begin and end of the run
- ★ G4UserEventAction
 - Begin and end of an event
- ★ G4UserTrackingAction
 - Begin and end of tracking of a G4Track
- ★ G4UserSteppingAction
 - At each step
- ★ G4UserStackingAction
 - Classification of new G4Track

CMS simulation of SUSY event

Interfaces of user action use const references and pointers to preserve Geant4 kernel from user interventions:

void G4UserRunAction::BeginOfRunAction(const G4Run* run)
void G4UserRunAction::EndOfRunAction(const G4Run* run)

void G4UserEventAction::BeginOfEventAction(const G4Event* evt)
void G4UserEventAction::EndOfEventAction(const G4Event* evt)

G4ClassificationOfNewTrack

G4UserStackingAction::ClassifyNewTrack(const G4Track* track)

G4ClassificationOfNewTrack = fUrgent	- put into urgent stack
fWaiting	- put into waiting stack
fPostpone	e - postpone to the next event
fKill	- kill without stacking

When G4Track is taken from a stack for tracking the user action is invoked:

- void G4UserTrackingAction::PreUserTrackingAction (const G4Track* track)
- Information is available about mother particle, vertex, position, 4-momentum, creation process, etc
- After the end of tracking the user action is invoked:
 - void G4UserTrackingAction::PostUserTrackingAction (const G4Track* track)

* Tracking action allows to control event history

- * At each step user have access to complete information about each step of simulation
 - void G4UserSteppingAction::UserSteppingAction (const G4Step* step)
- * The pointer to G4Step allows to access other instances:
 - const G4Track* track = step->GetTrack();
 - const G4StepPoint* prePoint = step->GetPreStepPoint();
 - const G4StepPoint* postPoint = step->GetPostStepPoint();
- * WARNING: user code may be source of CPU penalty
- All what can be done using sensitive detector approach, can be also done inside UserSteppingAction for complete responsibility of the user
 - Inside G4UserSteppingAction the complete navigation in the geometry tree needs to be done
 - Sensitive Detector is called only if step is performed inside corresponding volume

G4UserSteppingAction example

// example/extended/electromagnetic/MuonProcesses

void SteppingAction::UserSteppingAction(const G4Step* aStep) {
 G4StepPoint* prePoint = aStep->GetPreStepPoint();
 G4StepPoint* postPoint = aStep->GetPostStepPoint();

//plot energy transfered

G4double kinEnergyPreStep = prePoint->GetKineticEnergy(); G4double kinEnergyPostStep = prePoint->GetKineticEnergy(); G4double lgepsE = 1.0 - kinEnergyPostStep/ kinEnergyPreStep; if (etrans > 0.) lgepsE = std::log10(lgepsE);

//count processes

G4String procName = postPoint->GetProcessDefinedStep()->GetProcessName(); G4int id = 0; if (procName == "muIoni") id = 1; if (procName == "muIoni") id = 1; if (procName == "muPairProd") id = 2; if (procName == "muBrems") id = 3; if (procName == "muNucl") id = 4; histoManager->FillHisto(id,lgepsE);

Geant4

Verbosity

Standard Geant4 verbosity can be activated via UI commands:

- /run/verbose 1
- /event/verbose 1
- /tracking/verbose 1
- User have a possibility to have additional verbosity in user action classes
- It is possible to have user implementation of G4VSteppingVerbose class, for example,
 - \$G4INSTALL/example/extended/electromagnetic/TestEm1

Analysis Tools

- Analysis tools allow to store histograms, nTuples, and other objects with results of Geant4 simulation
- ★ Geant4 has no any native analysis tool it is external software
- ***** There are several Geant4 examples using analysis tools:
 - examples/extended/analysis/
 - examples/extended/electromagnetic
 - examples/advanced
- Available tools:
 - PI (CERN)
 - ROOT (CERN)
 - JAS (SLAC)
 - Open Scientist (LAL)
- AIDA interfaces
- Output formats: hbook, root, xml
- Analysis software are under intensive development

Example of Analysis - TestEm7

class RunAction : public G4UserRunAction {

public:

RunAction(DetectorConstruction*, PhysicsList*, PrimaryGeneratorAction*); ~RunAction();

void BeginOfRunAction (const G4Run*); void EndOfRunAction (const G4Run*);

// Specific methods for the example

void FillTallyEdep (G4int n, G4double e) {tallyEdep[n] += e;}; G4double GetBinLength() {return binLength;}; G4double GetOffsetX() {return offsetX;} void FillHisto(G4int id, G4double x, G4double weight = 1.0); void AddProjRange (G4double x) {projRange += x; projRange2 += x*x;};

private:

void bookHisto(); void cleanHisto(); // Access to external software

// Specific members of the example

DetectorConstruction*detector;PhysicsList*physics;PrimaryGeneratorAction*kinematic;G4double*tallyEdep;G4doublebinLength;G4doubleoffsetX;G4doubleprojRange, projRange2;

// AIDA interfaces

AIDA::IAnalysisFactory* af; AIDA::ITree* tree; AIDA::IHistogram1D* histo[1]; };

Geant4

External Frameworks

- * Each large HEP project has a software framework and Geant4 as a toolkit can be driven by the framework
- User actions are used to exchange data between Geant4 kernel and the framework
 - Factory approach: many specialized user actions
- * There are also useful tools built on top of Geant4, which can be used in small projects

BaBar (SLAC, Stanford) - Leader Experiment Using Geant4

GATE Software for Tomography

Geometry examples of GATE applications

26.05.2005 User Actions

General Radiation Analysis for Space - GRAS

★ New project of ESA

- Service for radiation studies for space applications
- * Generic dosimetry and analysis
- Can be applied for studying of different problems
- Available for testers, public release soon

Conclusion remarks

- The Geant4 toolkit provides a wide choice of user actions allowing detailed monitoring of the simulation
- It is user's responsibility to choose and design of user actions and/or analysis engine
- In Geant4 examples (novice, extended, advanced) there are proposed solutions for different usecases
- ★ User actions may require extra CPU and/or memory