

Detector Description – basic concepts

http://cern.ch/geant4

Detector Description

- Part I The Basics
- Part II Logical and physical volumes
- Part III Solids, touchables
- Part IV Optimisation technique & Advanced features

PART 1

Detector Description: the Basics

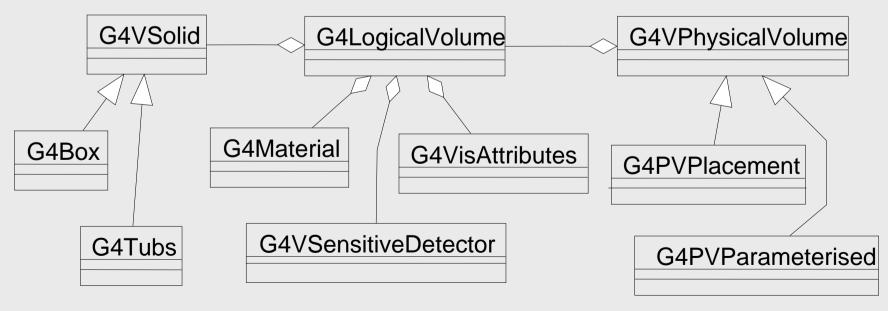
Describe your detector

- Derive your own concrete class from G4VUserDetectorConstruction abstract base class.
- Implementing the method Construct():
 - Modularize it according to each detector component or sub-detector:
 - Construct all necessary materials
 - Define shapes/solids required to describe the geometry
 - Construct and place volumes of your detector geometry
 - Define sensitive detectors and identify detector volumes which to associate them
 - > Associate magnetic field to detector regions
 - > Define visualization attributes for the detector elements

Creating a Detector Volume

- Start with its Shape & Size
 - Box 3x5x7 cm, sphere R=8m
- Add properties:
 - material, B/E field,
 - make it sensitive
- Place it in another volume
 - in one place
 - repeatedly using a function

- Solid
- Logical-Volume
- Physical-Volume


Define detector geometry

Three conceptual layers

- G4VSolid -- shape, size
- **G4LogicalVolume** -- *daughter physical volumes*,

material, sensitivity, user limits, etc.

G4VPhysicalVolume -- *position, rotation*

Define detector geometry

Basic strategy

A unique physical volume which represents the experimental area must exist and fully contains all other components

The world volume

PART II

Detector Description: Logical and Physical Volumes

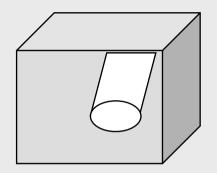
G4LogicalVolume

```
G4LogicalVolume(G4VSolid* pSolid, G4Material* pMaterial,
```

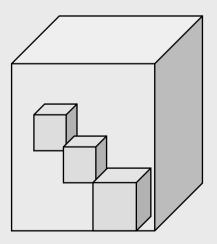
const G4String& name, G4FieldManager* pFieldMgr=0, G4VSensitiveDetector* pSDetector=0, G4UserLimits* pULimits=0, G4bool optimise=true);

- Contains all information of volume except position:
 - Shape and dimension (G4VSolid)
 - Material, sensitivity, visualization attributes
 - Position of daughter volumes
 - Magnetic field, User limits
 - Shower parameterisation
- Physical volumes of same type can share a logical volume.
- The pointers to solid and material must be NOT null
- Once created it is automatically entered in the LV store
- It is not meant to act as a base class

G4VPhysicalVolume


- G4PVPlacement 1 Placement = One Volume
 - A volume instance positioned once in a mother volume
- G4PVParameterised 1 Parameterised = Many Volumes
 - Parameterised by the copy number
 - Shape, size, material, position and rotation can be parameterised, by implementing a concrete class of G4VPVParameterisation.
 - Reduction of memory consumption
 - Currently: parameterisation can be used only for volumes that either a) have no further daughters <u>or</u> b) are identical in size & shape.
- G4PVReplica1 Replica = Many Volumes
 - Slicing a volume into smaller pieces (if it has a symmetry)

Physical Volumes


Placement: it is one positioned volume

Repeated: a volume placed many times

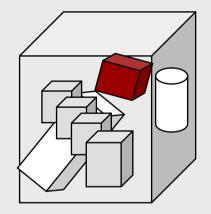
- can represent any number of volumes
- reduces use of memory.
- Replica
 - simple repetition, similar to G3 divisions
- Parameterised
- A mother volume can contain either
 many placement volumes <u>OR</u>
 one repeated volume

placement

repeated

G4PVPlacement

G4PVPlacement(G4RotationMatrix* pRot,

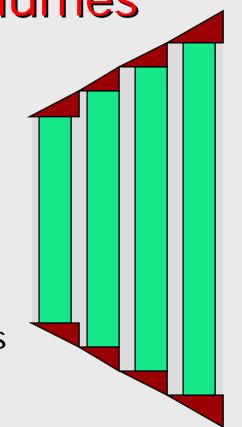

const G4ThreeVector& tlate, G4LogicalVolume* pCurrentLogical, const G4String& pName, G4LogicalVolume* pMotherLogical, G4bool pMany, G4int pCopyNo);

Single volume positioned relatively to the mother volume

- In a frame rotated and translated relative to the coordinate system of the mother volume
- Three additional constructors:
 - A simple variation: specifying the mother volume as a pointer to its physical volume instead of its logical volume.
 - Using G4Transform3D to represent the direct rotation and translation of the solid instead of the frame
 - The combination of the two variants above

Parameterised Physical Volumes

- User written functions define:
 - the size of the solid (dimensions)
 - Function ComputeDimensions(...)
 - where it is positioned (transformation)
 - Function ComputeTransformations(...)
- Optional:
 - the type of the solid
 - Function ComputeSolid(...)
 - the material
 - Function ComputeMaterial(...)
- Limitations:
 - Applies to simple CSG solids only
 - Daughter volumes allowed only for special cases
- Very powerful
 - Consider parameterised volumes as "leaf" volumes


Uses of Parameterised Volumes

Complex detectors

- with large repetition of volumes
 - regular or irregular
- Medical applications

the material in animal tissue is measured

cubes with varying material

G4PVParameterised

G4PVParameterised(const G4String& pName,

G4LogicalVolume* pCurrentLogical, G4LogicalVolume* pMotherLogical, const EAxis pAxis, const G4int nReplicas, G4VPVParameterisation* pParam);

- Replicates the volume nReplicas times using the parameterisation pParam, within the mother volume
- The positioning of the replicas is dominant along the specified Cartesian axis
 - If kUndefined is specified as axis, 3D voxelisation for optimisation of the geometry is adopted
- Represents many touchable detector elements differing in their positioning and dimensions. Both are calculated by means of a G4VPVParameterisation object
- Alternative constructor using pointer to physical volume for the mother

Parameterisation example - 1

```
G4VSolid* solidChamber = new G4Box("chamber", 100*cm, 100*cm, 10*cm);
G4LogicalVolume* logicChamber =
  new G4LogicalVolume(solidChamber, ChamberMater, "Chamber", 0, 0, 0);
G4double firstPosition = -trackerSize + 0.5*ChamberWidth;
G4double firstLength = fTrackerLength/10;
G4double lastLength = fTrackerLength;
G4VPVParameterisation* chamberParam =
  new ChamberParameterisation (NbOfChambers, firstPosition,
                                 ChamberSpacing, ChamberWidth,
                                 firstLength, lastLength);
G4VPhysicalVolume* physChamber =
  new G4PVParameterised( "Chamber", logicChamber, logicTracker,
                          kZAxis,)NbOfChambers, chamberParam);
                          Use kundefined for activating 3D voxelisation for optimisation
```

Parameterisation example - 2

G4double spacing, G4double widthChamber,

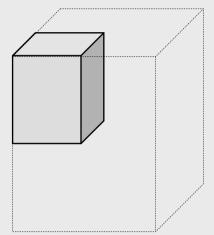
G4double lenInitial, G4double lenFinal);

```
~ChamberParameterisation();
```

void ComputeTransformation (const G4int copyNo,

G4VPhysicalVolume* physVol) const;

void **ComputeDimensions** (G4Box& trackerLayer, const G4int copyNo,


const G4VPhysicalVolume* physVol) const;

Parameterisation example - 3

```
void ChamberParameterisation::ComputeTransformation
(const G4int copyNo, G4VPhysicalVolume* physVol) const
 G4double Zposition= fStartZ + (copyNo+1) * fSpacing;
 G4ThreeVector origin(0, 0, Zposition);
 physVol->SetTranslation(origin);
 physVol->SetRotation(0);
void ChamberParameterisation::ComputeDimensions
(G4Box& trackerChamber, const G4int copyNo,
const G4VPhysicalVolume* physVol) const
 G4double halfLength= fHalfLengthFirst + copyNo * fHalfLengthIncr;
 trackerChamber.SetXHalfLength(halfLength);
 trackerChamber.SetYHalfLength(halfLength);
 trackerChamber.SetZHalfLength(fHalfWidth);
```

Replicated Physical Volumes

- The mother volume is sliced into replicas, all of the same size and dimensions.
- Represents many touchable detector elements differing only in their positioning.
- Replication may occur along:
 - Cartesian axes (X, Y, Z) slices are considered perpendicular to the axis of replication
 - Coordinate system at the center of each replica
 - Radial axis (Rho) cons/tubs sections centered on the origin and un-rotated
 - Coordinate system same as the mother
 - Phi axis (Phi) phi sections or wedges, of cons/tubs form
 - Coordinate system rotated such as that the X axis bisects the angle made by each wedge

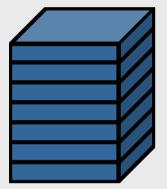
repeated

G4PVReplica

G4PVReplica (const G4String& pName,

```
G4LogicalVolume* pCurrentLogical,
```

G4LogicalVolume* pMotherLogical,

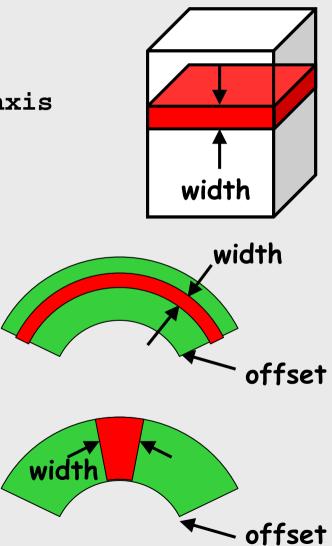

const EAxis pAxis,

const G4int nReplicas,

```
const G4double width,
```

```
const G4double offset=0);
```

a daughter volume to be replicated



mother volume

- Alternative constructor: using pointer to physical volume for the mother
- An offset can only be associated to a mother offset along the axis of replication
- Features and restrictions:
 - Replicas can be placed inside other replicas
 - Normal placement volumes can be placed inside replicas, assuming no intersection/overlaps with the mother volume or with other replicas
 - No volume can be placed inside a radial replication
 - Parameterised volumes cannot be placed inside a replica

Replica – axis, width, offset

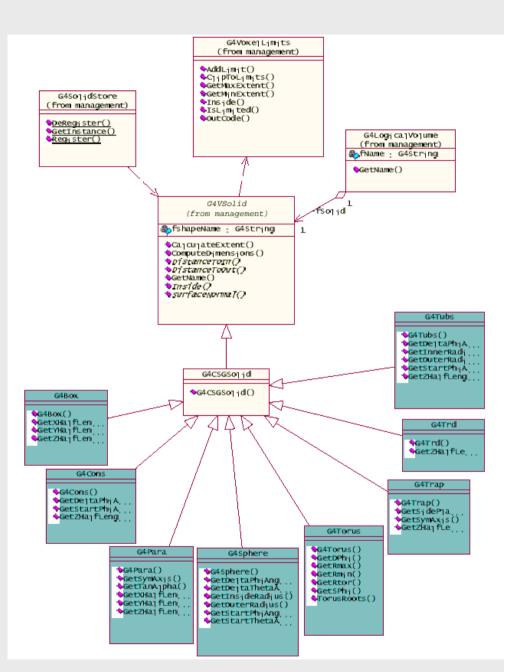
- Cartesian axes kXaxis, kYaxis, kZaxis
 - offset shall not be used
 - Center of n-th daughter is given as -width*(nReplicas-1)*0.5+n*width
- Radial axis kRaxis
 - Center of n-th daughter is given as width*(n+0.5)+offset
- Phi axis kPhi
 - Center of n-th daughter is given as width*(n+0.5)+offset

Replication example

```
G4double tube dPhi = 2.* M PI;
G4VSolid* tube =
  new G4Tubs("tube", 20*cm, 50*cm, 30*cm, 0., tube dPhi*rad);
 G4LogicalVolume * tube log =
  new G4LogicalVolume(tube, Ar, "tubeL", 0, 0, 0);
G4VPhysicalVolume* tube phys =
  new G4PVPlacement(0,G4ThreeVector(-200.*cm, 0., 0.*cm),
                     "tubeP", tube_log, world_phys, false, 0);
 G4double divided tube dPhi = tube dPhi/6.;
 G4VSolid* divided tube =
  new G4Tubs("divided_tube", 20*cm, 50*cm, 30*cm,
              -divided tube dPhi/2.*rad, divided tube dPhi*rad);
 G4LogicalVolume* divided tube log =
  new G4LogicalVolume(divided_tube, Ar, "div_tubeL", 0, 0, 0);
 G4VPhysicalVolume* divided tube phys =
   new G4PVReplica("divided tube phys", divided tube log, tube log,
                   kPhi, 6, divided_tube_dPhi);
```

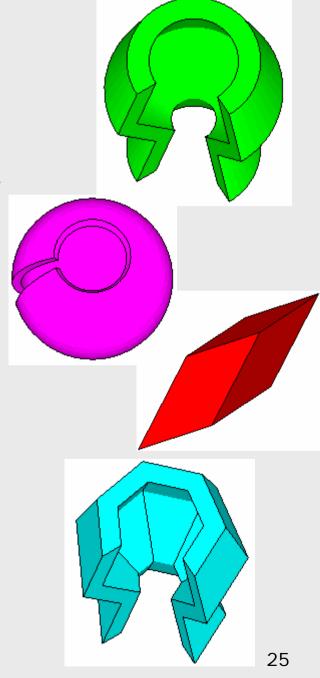
Divided Physical Volumes

Implemented as "special" kind of parameterised volumes


- Applies to CSG-like solids only (box, tubs, cons, para, trd, polycone, polyhedra)
- Divides a volume in identical copies along one of its axis (copies are not strictly identical)
 - e.g. a tube divided along its radial axis
 - Offsets can be specified
- The possible axes of division vary according to the supported solid type
- Represents many touchable detector elements differing only in their positioning
- **G4PVDivision** is the class defining the division
 - The parameterisation is calculated automatically using the values provided in input

PART III

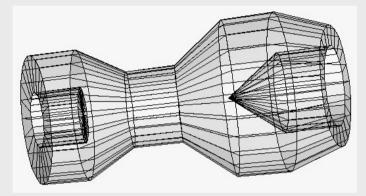
Detector Description: Solids & Touchables


G4VSolid

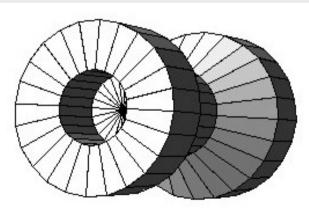
- Abstract class. All solids in Geant4 derive from it
 - Defines but does not implement all functions required to:
 - compute distances to/from the shape
 - check whether a point is inside the shape
 - compute the extent of the shape
 - compute the surface normal to the shape at a given point
- Once constructed, each solid is automatically registered in a specific solid store

Solids

- Solids defined in Geant4:
 - CSG (Constructed Solid Geometry) solids
 - G4Box, G4Tubs, G4Cons, G4Trd, ...
 - Analogous to simple GEANT3 CSG solids
 - Specific solids (CSG like)
 - G4Polycone, G4Polyhedra, G4Hype, ...
 - BREP (Boundary REPresented) solids
 - G4BREPSolidPolycone, G4BSplineSurface, ...
 - Any order surface
 - Boolean solids
 - G4UnionSolid, G4SubtractionSolid, ...

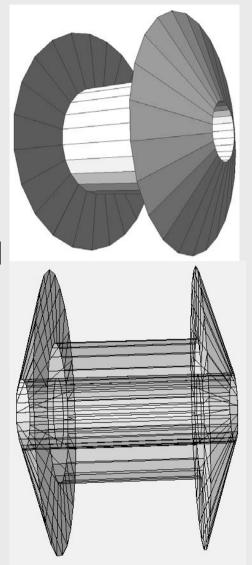

CSG: G4Tubs, G4Cons

G4Tubs(const	G4String&	pname,	//	name
	G4double	pRmin,	//	inner radius
	G4double	pRmax,	//	outer radius
	G4double	pDz,	//	Z half length
	G4double	pSphi,	//	starting Phi
	G4double	pDphi);	//	segment angle

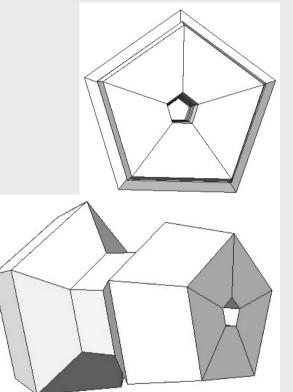

G4Cons(const	G4String&	pname,	//	name
	G4double	pRmin1,	//	inner radius -pDz
	G4double	pRmax1,	//	outer radius -pDz
	G4double	pRmin2,	//	inner radius +pDz
	G4double	pRmax2,	//	outer radius +pDz
	G4double	pDz,	//	Z half length
	G4double	pSphi,	//	starting Phi
	G4double	pDphi);	11	segment angle

Specific CSG Solids: G4Polycone

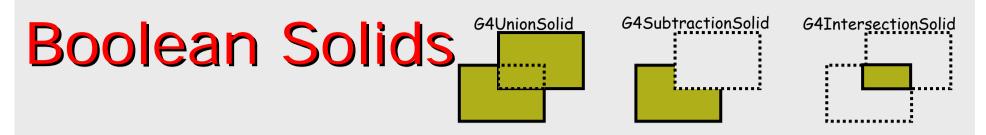
G4Polycone(const G4String& pName, G4double phiStart, G4double phiTotal, G4int numRZ, const G4double r[], const G4double z[]);


- numRz numbers of corners in the r,z space
- r, z coordinates of corners
- Additional constructor using planes

BREP Solids


BREP = Boundary REPresented Solid Listing all its surfaces specifies a solid e.g. 6 squares for a cube Surfaces can be planar, 2nd or higher order elementary BREPS Splines, B-Splines, NURBS (Non-Uniform B-Splines) advanced BREPS Few elementary BREPS pre-defined box, cons, tubs, sphere, torus, polycone, polyhedra

Advanced BREPS built through CAD systems

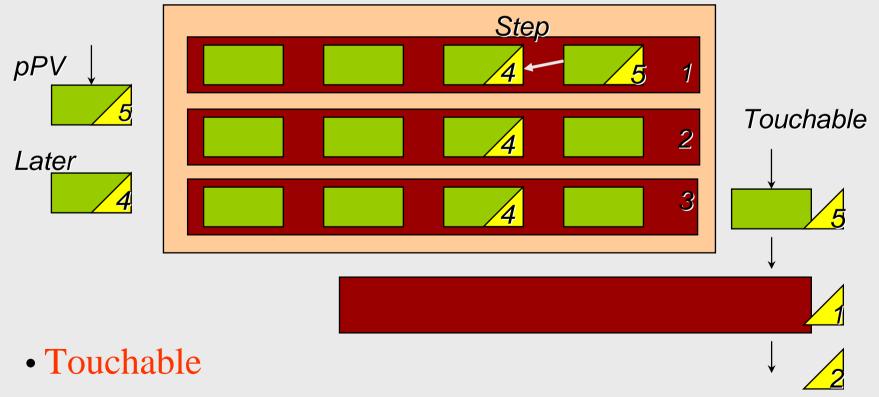


BREPS: G4BREPSolidPolyhedra

G4BREPSolidPolyhedra(const G4String& pName, G4double phiStart, G4double phiTotal, G4int sides, G4int nZplanes, G4double zStart, const G4double zval[], const G4double rmin[], const G4double rmax[]);

- sides numbers of sides of each polygon in the x-y plane
- nZplanes numbers of planes perpendicular to the z axis
- zval[] z coordinates of each plane
- rmin[], rmax[] Radii of inner and outer polygon at each plane

Solids can be combined using boolean operations:


- G4UnionSolid, G4SubtractionSolid, G4IntersectionSolid
- Requires: 2 solids, 1 boolean operation, and an (optional) transformation for the 2nd solid
 - 2nd solid is positioned relative to the coordinate system of the 1st solid

Example:

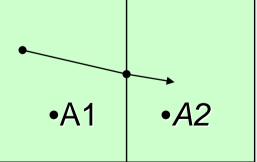
- Solids can be either CSG or other Boolean solids
- <u>Note</u>: tracking cost for the navigation in a complex Boolean solid is proportional to the number of constituent solids

How to identify a volume uniquely?

- Need to identify a volume uniquely
- Is a physical volume pointer enough? NO!

What can a touchable do?

- All generic touchables can reply to these queries:
 - positioning information (rotation, position)
 - GetTranslation(), GetRotation()
- Specific types of touchable also know:
 - (solids) their associated shape: GetSolid()
 - (volumes) their physical volume: GetVolume()
 - (volumes) their replication number: GetReplicaNumber()
 - (volumes hierarchy or touchable history):
 - info about its hierarchy of placements: GetHistoryDepth()
 - At the top of the history tree is the world volume
 - modify/update touchable: MoveUpHistory(), UpdateYourself()
 - take additional arguments


Benefits of Touchables in track

Permanent information stored

 to avoid implications with a "live" volume tree

 Full geometrical information available

 to processes
 to sensitive detectors
 to hits

Touchable - 1


- G4Step has two G4StepPoint objects as its starting and ending points. All the geometrical information of the particular step should be got from "PreStepPoint"
 - Geometrical information associated with G4Track is basically same as "PostStepPoint"
- Each G4StepPoint object has:
 - position in world coordinate system
 - global and local time
 - material
 - G4TouchableHistory for geometrical information
 - Copy-number, transformations
- Handles (or smart-pointers) to touchables are intrinsically used. Touchables are reference counted

Touchable - 2

G4TouchableHistory has information of geometrical hierarchy of the point

Copy numbers

- Suppose a calorimeter is made of 4x5 cells
 - and it is implemented by two levels of replica.
- In reality, there is only one physical volume object for each level. Its position is parameterized by its copy number
- To get the copy number of each level, suppose what happens if a step belongs to two cells

- Remember geometrical information in G4Track is identical to "PostStepPoint". You cannot get the collect copy number for "PreStepPoint" if you directly access to the physical volume
- Use touchable to get the proper copy number, transform matrix,...