
Detector Description – basic concepts

http://cern.ch/geant4

Detector DescriptionDetector Description

Part I The Basics

Part II Logical and physical volumes

Part III Solids, touchables

Part IV Optimisation technique &
Advanced features

PART 1

Detector Description: Detector Description:
the Basicsthe Basics

Describe your detectorDescribe your detector
Derive your own concrete class from
G4VUserDetectorConstruction abstract base class.
Implementing the method Construct():

Modularize it according to each detector component or
sub-detector:

• Construct all necessary materials
• Define shapes/solids required to describe the geometry
• Construct and place volumes of your detector geometry

Define sensitive detectors and identify detector volumes
which to associate them
Associate magnetic field to detector regions
Define visualization attributes for the detector elements

Creating a Detector VolumeCreating a Detector Volume
Start with its Shape & Size

Box 3x5x7 cm, sphere R=8m

Add properties:
material, B/E field,
make it sensitive

Place it in another volume
in one place
repeatedly using a function

Solid

Logical-Volume

Physical-Volume

Define detector geometryDefine detector geometry

G4Box

G4Tubs

G4VSolid G4VPhysicalVolume

G4Material

G4VSensitiveDetector

G4PVPlacement

G4PVParameterised

G4VisAttributes

G4LogicalVolume

Three conceptual layers
G4VSolid -- shape, size
G4LogicalVolume -- daughter physical volumes,

material, sensitivity, user limits, etc.
G4VPhysicalVolume -- position, rotation

Define detector geometryDefine detector geometry
Basic strategy
G4VSolid* pBoxSolid =
new G4Box(“aBoxSolid”, 1.*m, 2.*m, 3.*m);

G4LogicalVolume* pBoxLog =
new G4LogicalVolume(pBoxSolid, pBoxMaterial,

“aBoxLog”, 0, 0, 0);
G4VPhysicalVolume* aBoxPhys =
new G4PVPlacement(pRotation,

G4ThreeVector(posX, posY, posZ),
pBoxLog, “aBoxPhys”, pMotherLog,
0, copyNo);

A unique physical volume which represents the experimental
area must exist and fully contains all other components

The world volume

PART II

Detector Description: Detector Description:
Logical and Physical VolumesLogical and Physical Volumes

G4LogicalVolumeG4LogicalVolume
G4LogicalVolume(G4VSolid* pSolid, G4Material* pMaterial,

const G4String& name, G4FieldManager* pFieldMgr=0,
G4VSensitiveDetector* pSDetector=0,
G4UserLimits* pULimits=0,
G4bool optimise=true);

Contains all information of volume except position:
• Shape and dimension (G4VSolid)
• Material, sensitivity, visualization attributes
• Position of daughter volumes
• Magnetic field, User limits
• Shower parameterisation

Physical volumes of same type can share a logical volume.
The pointers to solid and material must be NOT null
Once created it is automatically entered in the LV store
It is not meant to act as a base class

G4VPhysicalVolumeG4VPhysicalVolume
G4PVPlacement 1 Placement = One Volume

• A volume instance positioned once in a mother volume

G4PVParameterised 1 Parameterised = Many Volumes
• Parameterised by the copy number

• Shape, size, material, position and rotation can be
parameterised, by implementing a concrete class of
G4VPVParameterisation.

• Reduction of memory consumption
• Currently: parameterisation can be used only for volumes

that either a) have no further daughters or b) are identical in
size & shape.

G4PVReplica 1 Replica = Many Volumes
• Slicing a volume into smaller pieces (if it has a symmetry)

Physical VolumesPhysical Volumes

repeated

placement

Placement: it is one positioned volume

Repeated: a volume placed many times
can represent any number of volumes
reduces use of memory.
Replica

• simple repetition, similar to G3 divisions
Parameterised

A mother volume can contain either
many placement volumes OR
one repeated volume

G4PVPlacementG4PVPlacement
G4PVPlacement(G4RotationMatrix* pRot,

const G4ThreeVector& tlate,
G4LogicalVolume* pCurrentLogical,
const G4String& pName,
G4LogicalVolume* pMotherLogical,
G4bool pMany,
G4int pCopyNo);

Single volume positioned relatively to the mother volume
In a frame rotated and translated relative to the coordinate
system of the mother volume

Three additional constructors:
A simple variation: specifying the mother volume as a pointer
to its physical volume instead of its logical volume.
Using G4Transform3D to represent the direct rotation and
translation of the solid instead of the frame
The combination of the two variants above

Parameterised Physical VolumesParameterised Physical Volumes
User written functions define:

the size of the solid (dimensions)
• Function ComputeDimensions(…)

where it is positioned (transformation)
• Function ComputeTransformations(…)

Optional:
the type of the solid

• Function ComputeSolid(…)

the material
• Function ComputeMaterial(…)

Limitations:
Applies to simple CSG solids only
Daughter volumes allowed only for special cases

Very powerful
Consider parameterised volumes as “leaf” volumes

Uses of Uses of ParameterisedParameterised VolumesVolumes

Complex detectors
with large repetition of
volumes
• regular or irregular

Medical applications
the material in animal tissue is
measured
• cubes with varying material

G4PVParameterisedG4PVParameterised
G4PVParameterised(const G4String& pName,

G4LogicalVolume* pCurrentLogical,
G4LogicalVolume* pMotherLogical,
const EAxis pAxis,
const G4int nReplicas,
G4VPVParameterisation* pParam);

Replicates the volume nReplicas times using the
parameterisation pParam, within the mother volume
The positioning of the replicas is dominant along the
specified Cartesian axis

If kUndefined is specified as axis, 3D voxelisation for
optimisation of the geometry is adopted

Represents many touchable detector elements differing in
their positioning and dimensions. Both are calculated by
means of a G4VPVParameterisation object
Alternative constructor using pointer to physical volume
for the mother

ParameterisationParameterisation
example example -- 11

G4VSolid* solidChamber = new G4Box("chamber", 100*cm, 100*cm, 10*cm);

G4LogicalVolume* logicChamber =

new G4LogicalVolume(solidChamber, ChamberMater, "Chamber", 0, 0, 0);

G4double firstPosition = -trackerSize + 0.5*ChamberWidth;

G4double firstLength = fTrackerLength/10;

G4double lastLength = fTrackerLength;

G4VPVParameterisation* chamberParam =

new ChamberParameterisation(NbOfChambers, firstPosition,

ChamberSpacing, ChamberWidth,

firstLength, lastLength);

G4VPhysicalVolume* physChamber =

new G4PVParameterised("Chamber", logicChamber, logicTracker,

kZAxis, NbOfChambers, chamberParam);

Use kUndefined for activating 3D voxelisation for optimisation

ParameterisationParameterisation
example example -- 22
class ChamberParameterisation : public G4VPVParameterisation

{

public:

ChamberParameterisation(G4int NoChambers, G4double startZ,

G4double spacing, G4double widthChamber,

G4double lenInitial, G4double lenFinal);

~ChamberParameterisation();

void ComputeTransformation (const G4int copyNo,

G4VPhysicalVolume* physVol) const;

void ComputeDimensions (G4Box& trackerLayer, const G4int copyNo,

const G4VPhysicalVolume* physVol) const;

}

ParameterisationParameterisation
example example -- 33

void ChamberParameterisation::ComputeTransformation

(const G4int copyNo, G4VPhysicalVolume* physVol) const

{

G4double Zposition= fStartZ + (copyNo+1) * fSpacing;

G4ThreeVector origin(0, 0, Zposition);

physVol->SetTranslation(origin);

physVol->SetRotation(0);

}

void ChamberParameterisation::ComputeDimensions

(G4Box& trackerChamber, const G4int copyNo,

const G4VPhysicalVolume* physVol) const

{

G4double halfLength= fHalfLengthFirst + copyNo * fHalfLengthIncr;

trackerChamber.SetXHalfLength(halfLength);

trackerChamber.SetYHalfLength(halfLength);

trackerChamber.SetZHalfLength(fHalfWidth);

}

Replicated Physical VolumesReplicated Physical Volumes

repeated

The mother volume is sliced into replicas, all
of the same size and dimensions.
Represents many touchable detector elements
differing only in their positioning.
Replication may occur along:

Cartesian axes (X, Y, Z) – slices are considered
perpendicular to the axis of replication

• Coordinate system at the center of each replica
Radial axis (Rho) – cons/tubs sections centered
on the origin and un-rotated

• Coordinate system same as the mother
Phi axis (Phi) – phi sections or wedges, of
cons/tubs form

• Coordinate system rotated such as that the X axis
bisects the angle made by each wedge

G4PVReplicaG4PVReplica
G4PVReplica(const G4String& pName,

G4LogicalVolume* pCurrentLogical,
G4LogicalVolume* pMotherLogical,
const EAxis pAxis,
const G4int nReplicas,
const G4double width,
const G4double offset=0);

Alternative constructor: using pointer to physical volume for the
mother
An offset can only be associated to a mother offset along the
axis of replication
Features and restrictions:

Replicas can be placed inside other replicas
Normal placement volumes can be placed inside replicas, assuming
no intersection/overlaps with the mother volume or with other
replicas
No volume can be placed inside a radial replication
Parameterised volumes cannot be placed inside a replica

a daughter volume
to be replicated

mother volume

Replica Replica –– axis, width, offsetaxis, width, offset

Cartesian axes - kXaxis, kYaxis, kZaxis

offset shall not be used

Center of n-th daughter is given as

-width*(nReplicas-1)*0.5+n*width

Radial axis - kRaxis

Center of n-th daughter is given as

width*(n+0.5)+offset

Phi axis - kPhi

Center of n-th daughter is given as

width*(n+0.5)+offset

offset

width

offset

width

width

ReplicationReplication
exampleexample

G4double tube_dPhi = 2.* M_PI;
G4VSolid* tube =
new G4Tubs("tube", 20*cm, 50*cm, 30*cm, 0., tube_dPhi*rad);

G4LogicalVolume * tube_log =
new G4LogicalVolume(tube, Ar, "tubeL", 0, 0, 0);

G4VPhysicalVolume* tube_phys =
new G4PVPlacement(0,G4ThreeVector(-200.*cm, 0., 0.*cm),

"tubeP", tube_log, world_phys, false, 0);
G4double divided_tube_dPhi = tube_dPhi/6.;
G4VSolid* divided_tube =
new G4Tubs("divided_tube", 20*cm, 50*cm, 30*cm,

-divided_tube_dPhi/2.*rad, divided_tube_dPhi*rad);
G4LogicalVolume* divided_tube_log =
new G4LogicalVolume(divided_tube, Ar, "div_tubeL", 0, 0, 0);

G4VPhysicalVolume* divided_tube_phys =
new G4PVReplica("divided_tube_phys", divided_tube_log, tube_log,

kPhi, 6, divided_tube_dPhi);

Divided Physical VolumesDivided Physical Volumes

Implemented as “special” kind of
parameterised volumes

Applies to CSG-like solids only (box, tubs, cons,
para, trd, polycone, polyhedra)
Divides a volume in identical copies along one
of its axis (copies are not strictly identical)

• e.g. - a tube divided along its radial axis
• Offsets can be specified

The possible axes of division vary according
to the supported solid type
Represents many touchable detector elements
differing only in their positioning
G4PVDivision is the class defining the division

The parameterisation is calculated
automatically using the values provided in input

PART III

Detector Description:Detector Description:
Solids & TouchablesSolids & Touchables

G4VSolidG4VSolid
Abstract class. All solids in
Geant4 derive from it

Defines but does not
implement all functions
required to:

• compute distances to/from
the shape

• check whether a point is
inside the shape

• compute the extent of the
shape

• compute the surface
normal to the shape at a
given point

Once constructed, each
solid is automatically
registered in a specific solid
store

G.Cosmo, Detector Description – Geant4 Course 24

SolidsSolids
Solids defined in Geant4:

CSG (Constructed Solid Geometry) solids
• G4Box, G4Tubs, G4Cons, G4Trd, …
• Analogous to simple GEANT3 CSG

solids
Specific solids (CSG like)
• G4Polycone, G4Polyhedra, G4Hype, …

BREP (Boundary REPresented) solids
• G4BREPSolidPolycone,

G4BSplineSurface, …
• Any order surface

Boolean solids
• G4UnionSolid, G4SubtractionSolid, …

G.Cosmo, Detector Description – Geant4 Course 25

CSG: G4Tubs, G4ConsCSG: G4Tubs, G4Cons
G4Tubs(const G4String& pname, // name

G4double pRmin, // inner radius
G4double pRmax, // outer radius
G4double pDz, // Z half length
G4double pSphi, // starting Phi
G4double pDphi); // segment angle

G4Cons(const G4String& pname, // name
G4double pRmin1, // inner radius -pDz
G4double pRmax1, // outer radius -pDz
G4double pRmin2, // inner radius +pDz
G4double pRmax2, // outer radius +pDz
G4double pDz, // Z half length
G4double pSphi, // starting Phi
G4double pDphi); // segment angle

Specific CSG Solids: Specific CSG Solids:
G4PolyconeG4Polycone

G4Polycone(const G4String& pName,

G4double phiStart,
G4double phiTotal,

G4int numRZ,
const G4double r[],
const G4double z[]);

numRZ - numbers of corners in the r,z space
r, z - coordinates of corners

Additional constructor using planes

BREP SolidsBREP Solids

BREP = Boundary REPresented Solid
Listing all its surfaces specifies a solid

e.g. 6 squares for a cube

Surfaces can be
planar, 2nd or higher order

• elementary BREPS
Splines, B-Splines,
NURBS (Non-Uniform B-Splines)
• advanced BREPS

Few elementary BREPS pre-defined
box, cons, tubs, sphere, torus, polycone, polyhedra

Advanced BREPS built through CAD systems

BREPS:BREPS:
G4BREPSolidPolyhedraG4BREPSolidPolyhedra

G4BREPSolidPolyhedra(const G4String& pName,
G4double phiStart,
G4double phiTotal,
G4int sides,
G4int nZplanes,
G4double zStart,

const G4double zval[],
const G4double rmin[],
const G4double rmax[]);

sides - numbers of sides of each polygon in the x-y plane
nZplanes - numbers of planes perpendicular to the z axis
zval[] - z coordinates of each plane
rmin[], rmax[] - Radii of inner and outer polygon at each plane

Boolean SolidsBoolean Solids

Solids can be combined using boolean operations:
G4UnionSolid, G4SubtractionSolid, G4IntersectionSolid

Requires: 2 solids, 1 boolean operation, and an (optional)
transformation for the 2nd solid

• 2nd solid is positioned relative to the coordinate system of the
1st solid

Example:
G4Box box(“Box", 20, 30, 40);
G4Tubs cylinder(“Cylinder”, 0, 50, 50, 0, 2*M_PI); // r: 0 -> 50

// z: -50 -> 50
// phi: 0 -> 2 pi

G4UnionSolid union("Box+Cylinder", &box, &cylinder);
G4IntersectionSolid intersect("Box Intersect Cylinder", &box, &cylinder);
G4SubtractionSolid subtract("Box-Cylinder", &box, &cylinder);

Solids can be either CSG or other Boolean solids
Note: tracking cost for the navigation in a complex Boolean
solid is proportional to the number of constituent solids

G4UnionSolid G4IntersectionSolidG4SubtractionSolid

How to identify a volume uniquely?How to identify a volume uniquely?

• Need to identify a volume uniquely
• Is a physical volume pointer enough? NO!

• Touchable

TouchableTouchable55

44

44

44

11

55 11

22

3344

pPVpPV

LaterLater

StepStep

22

55

What can a touchable do ?What can a touchable do ?

All generic touchables can reply to these
queries:

positioning information (rotation, position)
• GetTranslation(), GetRotation()

Specific types of touchable also know:
(solids) - their associated shape: GetSolid()
(volumes) - their physical volume: GetVolume()
(volumes) - their replication number: GetReplicaNumber()
(volumes hierarchy or touchable history):

• info about its hierarchy of placements: GetHistoryDepth()
• At the top of the history tree is the world volume

• modify/update touchable: MoveUpHistory(), UpdateYourself()
• take additional arguments

Benefits of Benefits of TouchablesTouchables in trackin track

••A1A1 ••A2A2

Permanent information stored
to avoid implications with a “live” volume tree

Full geometrical information available
to processes
to sensitive detectors
to hits

Touchable Touchable -- 11
G4Step has two G4StepPoint objects as its starting
and ending points. All the geometrical information of
the particular step should be got from “PreStepPoint”

Geometrical information associated with G4Track is basically
same as “PostStepPoint”

Each G4StepPoint object has:
position in world coordinate system
global and local time
material
G4TouchableHistory for geometrical information

• Copy-number, transformations

Handles (or smart-pointers) to touchables are
intrinsically used. Touchables are reference counted

Touchable Touchable -- 22

G4TouchableHistory has information
of geometrical hierarchy of the point

G4Step* aStep = ..;

G4StepPoint* preStepPoint = aStep->GetPreStepPoint();

G4TouchableHandle theTouchable =

preStepPoint->GetTouchableHandle();

G4int copyNo = theTouchable->GetReplicaNumber();

G4int motherCopyNo = theTouchable->GetReplicaNumber(1);

G4ThreeVector worldPos = preStepPoint->GetPosition();

G4ThreeVector localPos = theTouchable->GetHistory()->

GetTopTransform().TransformPoint(worldPos);

Copy numbersCopy numbers
Suppose a calorimeter is made
of 4x5 cells

and it is implemented by
two levels of replica.

In reality, there is only one
physical volume object for each
level. Its position is
parameterized by its copy
number
To get the copy number of
each level, suppose what
happens if a step belongs to
two cells

CopyNo = 0

CopyNo = 1

CopyNo = 2

CopyNo = 3

0

0

0

0

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

Remember geometrical information in G4Track is identical to
"PostStepPoint". You cannot get the collect copy number for
"PreStepPoint" if you directly access to the physical volume

Use touchable to get the proper copy number, transform matrix,…

