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• To propagate a particle in a field  (e.g. magnetic, 
electric or other), we solve the equation of 
motion of the particle in the field

• Using this solution we break up this curved path 
into linear chord segments
– We determine the chord segments so that they 

closely approximate the curved path. 
– each chord segment will be ‘intersected’ so see it 

crosses a volume boundary. 

Magnetic field: overview
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Magnetic field: a first example
Create your Magnetic field class

– Uniform field : 
• Use an object of the G4UniformMagField class

#include "G4UniformMagField.hh"
#include "G4FieldManager.hh"

#include "G4TransportationManager.hh“

G4MagneticField* magField= new 
G4UniformMagField( G4ThreeVector(1.0*Tesla, 0.0, 

0.0 ) ); 

– Non-uniform field :
• Create your own concrete class derived from G4MagneticField (see eg

ExN04Field in novice example N04)

Part 1/2
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Magnetic field: a first example 
Set your field as the ‘global’ field
• Find the global Field Manager

G4FieldManager* globalFieldMgr=            
G4TransportationManager::
GetTransportationManager()

->GetFieldManager();

• Set the field for this FieldManager,
globalFieldMgr->SetDetectorField(magField);

• and create a Chord Finder.
globalFieldMgr->CreateChordFinder(magField);

Part 2/2
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In practice: exampleN03
From ExN03DetectorConstruction.cc, 

which you can find also in geant4/examples/novice/N03/src
In the class definition
G4UniformMagField* magfield;

In  the method SetMagField(G4double fieldValue):

G4FieldManager* fieldMgr
= G4TransportationManager::GetTransportationManager()->GetFieldManager();

// create a uniform magnetic field along Z axis
magField = new G4UniformMagField(G4ThreeVector(0.,0.,fieldValue));

// Set this field as the global field
fieldMgr->SetDetectorField(magField);

// Prepare the propagation with default parameters and other choices.
fieldMgr->CreateChordFinder(magField);
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Beyond your first field
• Create your own field class

– To describe your setup’s EM field
• Global field and local fields

– The world or detector field manager
– An alternative field manager can be associated 

with any logical volume
• Currently the field must accept position global 

coordinates and return field in global coordinates 

• Customizing the field propagation classes
– Choosing an appropriate stepper for your field
– Setting precision parameters
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Creating your own field

void ExN04Field::GetFieldValue(
const double Point[4],

double *field) const

{
field[0] = 0.;

field[1] = 0.;
if(abs(Point[2])<zmax && 
(sqr(Point[0])+sqr(Point[1]))<rmax_sq)
{ field[2] = Bz; }

else

{ field[2] = 0.; }
}

Create a class, with one key method – that calculates the 
value of the field at a Point

Point [0..2]   position
Point[3]        time
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Global and local fields
• One field manager is associated with the ‘world’

– Set in G4TransportationManager
• Other volumes can override this

– By associating a field manager with any logical volume
• By default this is propagated to all its daughter volumes

G4FieldManager* localFieldMgr=
new G4FieldManager(magField);

logVolume->setFieldManager(localFieldMgr, 
true); 

where ‘true’ makes it push the field to all the volumes it 
contains.
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Solving the Equation of Motion
• In order to propagate a particle inside a field  (e.g. 

magnetic, electric or both), we solve the equation 
of motion of the particle in the field. 

• We use a Runge-Kutta method for the integration 
of the ordinary differential equations of motion. 
– Several Runge-Kutta ‘steppers’ are available.

• In specific cases other solvers can also be used: 
– In a uniform field, using the analytical solution.
– In a nearly uniform field (BgsTransportation/future)
– In a smooth but varying field, with new RK+helix. 
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• Using the method to calculate the track's motion in a 
field, Geant4 breaks up this curved path into linear 
chord segments. 

• Choose the chord segments so that their sagitta is small 
enough
– The sagitta is the maximum distance between the curved path 

and the straight line.
– Small enough: is smaller than a user-defined maximum. 

• We use the chords to interrogate the Navigator, to see 
whether the track has crossed a volume boundary. 

Splitting the path into chords

sagitta
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Stepping and accuracy
• You can set the accuracy of the volume intersection, 

– by setting a parameter called the “miss distance”
• it is a measure of the error in whether the approximate track 

intersects a volume. 
• Default “miss distance” is 0.25 mm  (used to be 3.0 mm).

• One physics/tracking step can create several chords.
– In some cases, one step consists of several helix turns.

miss distance

In one ‘tracking’
step Chords

real trajectory
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Precision parameters
• Errors come from

– Break-up of curved trajectory into linear chords 
– Numerical integration of equation of motion

• or potential approximation of the path,

– Intersection of path with volume boundary.
• Precision parameters enable the user to limit 

these errors and control performance.
– The following slides attempt to explain these parameters 

and their effects.
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Imprecisions
• Due to approximating the curved path by 

linear sections (chords)
– Parameter to limit this is maximum sagitta δchord

• Due to numerical integration, ‘error’ in 
final position and momentum
– Parameters to limit are εintegration max, min

• Due to intersecting approximate path with 
volume boundary
– Parameter is δintersection
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Key elements 
• Precision of track required by the user relates 

primarily to
– The precision (error in position) epos after a particle has 

undertaken track length s
– Precision DE in final energy (momentum) δE=∆E/E
– Expected maximum number Nint of integration steps.

• Recipe for parameters:
– Set εintegration (min, max)  smaller than

• The minimum ratio of epos / s along particle’s trajectory
• δE / Nint the relative error per integration step (in E/p) 

– Choosing how to set δchord is less well-define. One 
possible choice is driven by the typical size of your 
geometry (size of smallest volume)
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Where to find the parameters

0.001FieldManagerepsilonMax

0.01 mmFieldManagerDeltaOneStepδ one step

5 10-5FieldManagerepsilonMin

1 micronFieldManagerDeltaIntersectionδintersection

0.01 mmChordFinderstepMinimumdmin

0.25 mmChordFinderDeltaChordδmiss

Default 
value

ClassNameParamete
r



Details of Precision Parameters

For further/later use
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• Parameter δchord = maximum sagitta
• Effect of this parameter as δchord 0

s1step
propagator ~  (8 δchord R curv)1/2

so long as  spropagator < s phys and  spropagator > dmin (integr)

Volume miss error 
Due to the approximation 

of the curved path by 
linear sections (chords)

dsagitta < δchord

δchord

dsagitta
Parameter

value

=
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Integration error
Due to error in the numerical integration (of equations of 

motion)
Parameter(s):    εintegration

• The size s of the step is limited so that the 
estimated errors of the final position ∆r and 
momentum ∆p are both small enough:

max( || ∆r || / s ,  ||∆p|| / ||p|| ) < εintegration

• For ClassicalRK4 Stepper
s1step

integration ~ (εintegration)1/3

for small enough εintegration
• The integration error should be influenced by the precision of 

the knowledge of the field (measurement or modeling ).

s1step

∆r

Nsteps ~ (εintegration)-1/3
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Integration errors (cont.)

• In practice
εintegration is currently represented by 3 parameters

– epsilonMin, a minimum value (used for big steps)
– epsilonMax, a maximum value (used for small steps)
– DeltaOneStep, a distance error (for intermediate steps)

εintegration= δ one step / s physics

• Determining a reasonable value
– I suggest it should be the minimum of the ratio 

(accuracy/distance) between sensitive components, ..
• Another parameter

– dmin is the minimum step of integration 
• (newly enforced in Geant4 4.0)

Defaults
0.5*10-7

0.05
0.25 mm

Default
0.01 mm
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Intersection error
• In intersecting approximate path with 

volume boundary
– In trial step AB, intersection is found 

with a volume at C
– Step is broken up, choosing D, so

SAD = SAB * |AC|  /  |AB|

– If  |CD| < δintersection
• Then C is accepted as intersection 

point.
– So δint is a position error/bias 

A

C

B

D

SAD

p
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Intersection error (cont)
• So δint must be small

– compared to tracker hit error
– Its effect on reconstructed 

momentum estimates should be 
calculated

• And limited to be acceptable
• Cost of small δint is less

– than making δchord small
– Is proportional to the number of 

boundary crossings – not steps.
• Quicker convergence / lower cost

– Possible with optimization
• adding std algorithm, as in BgsLocation

D

A

E

F

If C is rejected,
a new intersection
point E is found.
E is good enough
• if |EF| < δint
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The ‘driving force’
• Distinguish cases according to the 

factor driving the tracking step length
– ‘physics’, eg in dense materials
– fine-grain geometry

• Distinguish the factor driving the 
propagator step length (if different)

– Need for accuracy in ‘seeing’ volume
– Integration inaccuracy

• Strongly varying field

Potential 
Influence

G4 Safety 
improvement

Other Steppers,
tuning dmin
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What if time does not change much?
• If adjusting these parameters (together) by a 

significant factor (10 to 100) does not produce 
results,
– Then field propagation may not the dominant (most 

CPU intensive) part of your program.
– Look into alternative measures

• modifying the physics ‘cuts’ – ie production thresholds
– To create fewer secondaries, and so track fewer particles

• determining the number of steps of neutral vs charged 
particles,

– To find whether neutrons, gammas  ‘dominate’
• profiling your application

– You can compile using G4PROFILE=yes, run your program and 
then use “gprof” to get an execution profile.
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