
ROOT-CORE Team 1

Rene Brun
18 March 2005

SFT-CORE-ROOT
Program of work

ROOT-CORE Team 2

Preliminary remarks

• This preliminary program of work is mainly for
ourselves to clarify several issues following the
merge of SEAL and ROOT.

• We need more discussions before a public
presentation end of March.

• I had no time to discuss this week with all
package managers several points that must still
be clarified.

• This presentation does not cover important
packages, such as the geometry or the VMC.

• We will not have the time to go through all the
slides (100!)

• Many thanks to Fons, Ilka, Lorenzo, Markus,
Olivier, Philippe, Richard for their contribution.

ROOT-CORE Team 3

Team structure

•• BASEBASE: System & CVS & DOC & Releases &
Test suite & newsgroups

Fons, Philippe, Pere,Bertrand, Ilka, Axel,
Jose, Rene

•• DICTINTDICTINT: CINT, Dictionary, Interpreters
Masa, Philippe, Markus, Stefan, Wim

•• IOIO: Basic I/O & Trees
Markus, Philippe

•• PROOFPROOF: PROOF & xrootd & GRIDs
Fons, Andreas, Maarten, Derek, Gerri,
Marek , Guenter+ BaBar

•• MATHMATH: Maths,Histograms,Functions, Linear
Alg

Lorenzo, Andras, Anna,Eddy

•• GUIGUI
Ilka, Valeriy, Bertrand, Valeri, Fons

•• GRAPHICSGRAPHICS: 2-D & 3-D graphics & Geometry
Olivier, Richard, Andrei, Mihaela, Timur, Bruno

Ilka Antcheva

Maarten Ballinjtin MIT 80%

Bertrand Bellenot ALCAN 50%

Bruno Belbute 100%

Marek Biskup

Rene Brun

Philippe Canal FNAL

Olivier Couet

Christophe Delaere BE 10%

Valeri Fine BNL 10%

Markus Frank LHCb 50%

Gerri Ganis

Andrei Gheata ALICE 80%

Mihaela Gheata unpaid 50%

Masa Goto JP ??%

Ivana Hrivnocova ORSAY 10%

uenGter Kickinger 100%

Anna Kreshuk

Wim Lavrijsen LBL 50%

Sergei Linev GSI 60%

Jose Lo 75%

Pere Mato

Richard Maunder

Lorenzo Moneta

Axel Naumann FNAL

Eddy Offermann RENTEC 50%

Valeriy Onuchin

Timur Pocheptov JINR 80%

Fons Rademakers

Stefan Roiser

Andras Zsenei

+xrootd

BaBar

ROOT-CORE Team 4

SEAL + ROOT Migration
• Adiabatic changes towards experiments

• Experiments need to see libraries they use currently will
evolve from current usage today towards a unique set

• Details be planned in the Programme of Work
• Will be extra tasks in order to complete migration

ROOT Libraries

SEAL Libraries

ROOT Libraries

SEAL Libraries

ROOT Libraries

1 deliverable but
some duplication still

2 deliverables
1 deliverable and

no duplication

timenow ~August 2005 ~January 2006

ROOT-CORE Team 1

• Fons Rademakers
• Ilka Antcheva
• Bertrand Bellenot
• Philippe Canal
• Jose Lo
• Pere Mato
• Axel Naumann

ROOT Base and SealBase

ROOT-CORE Team 6

Merging SealBase with ROOT

• Make an inventory of what exists in
SealBase and not in ROOT

• Port/add missing features to ROOT
• Provide a migration guide to help people

migrate to ROOT base classes

ROOT-CORE Team 7

SealBase

• SealBase provides about 80 classes that
provide basic infrastructure functionality:
• a set of classes encapsulating and abstracting

OS and libc concepts and functions
- file system, pipe, socket, inet addresses, system info,

user info, process info, shared library handling, i/o
multiplexing, error handling, time, memory mapped
files, signal handling, logging, etc.

• a set of utility classes:
- timestamps, bit handling, regexps, string operations,

tasks, callbacks, uuids, etc.

ROOT-CORE Team 8

ROOT Base

• ROOT provides basically the same functionality in a much
smaller number of classes.

• The main OS abstraction is via the TSystem class, which has
two concrete implementations:

• TUnixSystem
• TWinNTSystem

• Most OS access goes via direct calls to TSystem (not via
intermediate abstraction classes)

• Some higher level OS concepts are provided via their own
classes, like sockets, multiplexers, timestamps, etc, but
internally they all call TSystem

• In addition we also have a large set of utility classes for
concepts like uuids, signal/slots, strings, regexps, tasks,
white board, bit handling, etc.

ROOT-CORE Team 9

ACLiC

The ‘Automatic Compiler of Libraries for Cint’ the
tools implementing support for:
.L mymacro.C+

• Needs to be updated to properly support for
MacOS’s library idiosyncrasies
• Probably requires introduction of support for autotools’ .la

meta shared libraries files

• Extended support more flexibility in the location of
the generated library

• Enhance compilation speed for result of
MakeClass/MakeSelector/MakeProxy

ROOT-CORE Team 10

Coding practice and conventions

• Review existing coding practice and
conventions including exception and
error handling and better usage of
associative patterns.

• See Fons’ talk

ROOT-CORE Team 11

AutoDocumentation

• Reimplementation of THtml to remove
existing limitations

• new HTML presentation layer with
more functionality

• save/retrieve documentation in a root
file

• documentation available in ROOT
session

ROOT-CORE Team 12

User’s Guide

• User’s Guide is following ROOT production versions
• Current - “User’s Guide v4.0/08”

• New version in June/July
• New chapter “Linear Algebra”

• Chapters for updating:
• “Getting Started”

• “Graphics and Graphical User Interface”

• New chapters will be introduced: Mathlib..

ROOT-CORE Team 1

Philippe Canal
Masa Goto

Stefan Roiser
Wim Lavrijsen

DICTINT
Dictionary, Reflex,CINT,Python

ROOT-CORE Team 14

CINT, Dictionaries & Interpreters

• Main Goal
• Improve the conformity of the dictionary generator with

the C++ standard without sacrificing performance.

• Move to CINT 6 (enhanced code executor)
• Understand the issues surrounding the incorporation of

Reflex (and gcc_xml)
• Portability of gcc_xml to all the CINT supported platform
• Size and ease of installation of gcc_xml distribution
• Backward compatibility issues of the CINT API
• Performance issues (as far as interpreter is concerned)
• Structure of the collaboration with Masa (to CVS or not to

CVS).
• Update of the ROOT Meta classes to leverage Reflex API

ROOT-CORE Team 15

Dictionaries : situation today

X.h

X.xml

XDictlcg.cxx

REFLEX
DS

CINT
DS

rootcint

lcgdict

gccxml

XDictcint.cxx

CINT

API

REFLEX

API

ROOT

Root meta C++

CINT

cintex

ROOT-CORE Team 16

CINT/Reflex workshop

• A very important workshop has been
scheduled for May 2->7 to discuss the
integration of Reflex and CINT.
• Fons, Markus, Masa, Philippe, Rene, Stefan

• We hope to converge on a C++ DS
taking advantage of Reflex and the
current redesign of CINT by Masa.

• If successful, Cintex will not be
required anymore.

ROOT-CORE Team 17

Dictionaries : situation in the future

X.h

Reflex/Cint
DS

new
rootcint

Gccxml2reflex/cint
XDictcint.cxx

CINT/Reflex

API
ROOT

Root meta C++
CINT

Python

ROOT-CORE Team 18

Meta package

• Improve the support for loading a library
implementing a nested collection after the
collection has already been emulated.
• Introduce either a TClassRef or insure that

TClass objects are never deleted

• Test (or decide to abandon the idea)
changing ProcessLine to return a Long64_t

• Check if the autoloader now works for
classes in namespaces

• Add a TClass:SetCanSplit or equivalent
• Add support for virtual derivation

ROOT-CORE Team 19

CINT and Dictionaries

• Interpreted vs. Compiled function
• Resolve issues of asymmetry in their usage

• #include <stdio.h> vs. CINT's embedded
functions

• Improve support for typedef to function type
• Improve support for using statement when used

for class and function templates.
• Add proper support for private and protected

inheritance
• Resolve issues with non-qualified name

• list<std::list > vs list<list >

• Investigate a few hard to reproduce core dumps.

ROOT-CORE Team 1

Philippe Canal
Markus Frank

I/O
Basic I/O, RDBMS interfaces, Trees

ROOT-CORE Team 21

New RDBMS interface: Goals

• Access any RDBMS tables from TTree::Draw
• Create a Tree in split mode creating a RDBMS

table and filling it.
• The table can be processed by SQL directly.
• The interface uses the normal I/O engine,

including support for Automatic Schema Evolution.
• Convergence between RAL interface and the TSQL

interfaces

ROOT-CORE Team 22

File types & Access in 4.04/xx

Local
File

X.xml

RFIO Chirp

CastorDcacheLocal
File

X.root

http rootd/xrootd
Oracle

SapDb

PgSQL

MySQL

TFile
TKey/TTree

TStreamerInfo

user

TSQLServer
TSQLRow

TSQLResult

TTreeSQL

ROOT-CORE Team 23

TTree with SQL database back-end

• Upload in CVS repository of first version of
TTreeSQL
• support the TTree containing branches created using a

leaf list (eg. hsimple.C).

• Add an interface to create the proper TTree object
depending on the backend
• Something like TTree::Open using the Plugin Manager

• Extend TTreeSQL to support TBranchElement
• Implement proper schema evolution support

• The main design problem is how to save/retrieve the
TProcessID/TStreamerInfo.

• One possibility is to use the same mechanism currently in
use in TXMLFile

ROOT-CORE Team 24

General I/O improvements

• Upgrade support for C-style array of
pointers
• Currently support neither polymorphism nor

duplicate references to the same object

• Strengthen support for typedefs when the
library is not available.

• Review content of the ClassDef and
ClassImp macros.

ROOT-CORE Team 25

TTree

• Introduce support for bitmap indices
• Should speed up specific query by more

efficiently pre-selecting entries
• Work in collaboration with Kurt Stockinger and

John Wu (post Helmut work)

• Add support for class containing a sub-
object of the same type as one its base
class

ROOT-CORE Team 26

TTreeFormula

Used by TTree::Draw and TTree::Scan to efficiently retrieve a TTree’s
data

• Update to support automatic dereferencing of reference objects
including TRef and POOL refs.

• Improve support for casting the object type
• Allow intermixing of C++ function and TFormula functions in

TFormula
• Fix TFormula::GetExpFormula when containing a method call
• Add support for calling method with non-numerical arguments
• Add support for TList, TObjArray as collections

• Need a TVirtualCollectionProxy for each
• Fix a couple of oddities in the array dimension handling

• Add a TTree::Draw interface referring to the histogram by address
rather than by name.

ROOT-CORE Team 27

MakeProxy

MakeProxy generate a file implementing a class
deriving from TSelector with which a C++ function
can be run in a context where the name of the
branches are useable as a C++ variable.

• Add support for stl containers
• Allow interpretation of the result

• Need upgrade CINT to properly support cast
operators

• Provide an implementation of MakeSelector
and MakeClass using MakeProxy

ROOT-CORE Team 1

PROOF
xrootd

• Fons Rademakers
• Maarten Ballantjin
• Marek Biskup
• Derek Feichtinger (ARDA)
• Gerri Ganis
• Guenter Kickinger
• Andreas Peters (ARDA)

BaBar

ROOT-CORE Team 29

Original Goals

• Interactive parallel analysis on local cluster
• Transparency

• same selectors, same chain Draw(), etc. on PROOF as in local
session

• Scalability
• quite good and well understood up to 1000 nodes (most

extreme case)
• extensive monitoring capabilities
• MLM (Multi-Level-Master) improves scalability on wide area

clusters

• Adaptability
• partly achieved, system handles varying load on cluster nodes
• MLM allows much better latencies on wide area clusters
• not yet coming and going of worker nodes

ROOT-CORE Team 30

New Additional Goals

• Support for “interactive” batch mode
• allow submission of long running queries
• allow client/master disconnect and reconnect

• Support “hostile” grid environments
• startup of agents via Grid job scheduler
• agents calling out to master (firewalls, NAT)
• dynamic master-worker setup

ROOT-CORE Team 31

Disconnect / Reconnect

• Authentication, sessions token
• State issues
• Transparency issues

• TSelector::Begin(), Terminate()
• objects created in Terminate(), output lists, etc.
• storage of intermediate results

ROOT-CORE Team 32

Grid Interfacing

• Grid catalog
• data set creation
• meta data, #events, time, run, etc.

• proofd agent creation
• agents call out to (no-incoming connection)

• Config file generation / fully dynamic
• Coming and going of worker nodes
• Grid aware packetizer
• Scheduled execution
• Limiting processing to specific part of the data set

ROOT-CORE Team 33

Performance Issues

• Read ahead interface in (x)rootd
• Using and understanding xrootd
• Cache index on master, optimizes repeat

queries
• assign different sessions with same data set to

same worker nodes, reuse in memory files

• Monitoring
• Proofbench
• Query estimator

ROOT-CORE Team 34

Authentication, Authorization

• New xrootd authentication plugins
• Certificates (login and user name)

• single experiment wide login
• user name used for sandbox

• Authorization to sandbox and shared global
space
• not to other user’s sandboxes under same

account

ROOT-CORE Team 35

Robustness

• Get rid of OOB
• Split in two processes

• protocol, authentication processor (proofd)
• proofserv

• Communicate via priority based message
queue

• Threaded or forked?
• xrootd code reuse?
• Periodic output list reporting to the master

ROOT-CORE Team 36

Usability

• Selector with dynamic variables
• Selector proxy support

• (TTree::MakeProxy – better name)

• Tree friends
• Event lists
• Compressed bit slice indices
• All possible draw options of the Draw()

interface

ROOT-CORE Team 37

Usability

• Browser interface to:
• proof sessions
• on demand histograms (single shot, timer

driven feedback)
• monitoring histograms
• other input/output list objects

• Stop / resume capability

ROOT-CORE Team 38

Usability

• Limiting processing to specific part of the
data set
• allow meta data in the TDSet (time, run,

conditions, etc)
• be independent from catalog
• allows creation of new reduced data sets

• Remote display package, all canvases
created in the master are send back to the
client

ROOT-CORE Team 39

Conclusion

• We have started an acceleration in the
PROOF development towards achieving the
new exciting goals that will hugely enhance
the data analysis experience of very large
data sets

• A first firm milestone is a demo at SC’05

ROOT-CORE Team 1

ROOT Graphics

• Olivier Couet
• Valeri Fine
• Richard Maunder
• Valeriy Onuchin

ROOT-CORE Team 41

TPadGL / TCanvasGL

Once TPad will be split, a new version Based on
GL will be implemented. It will do:

• 2D graphics (the equivalent of gVirtualX is needed for OpenGL).

• 3D scene rendering (TGeo) (see 3D viewers slides)

• 3D representation (Lego etc ..)

TVirtualPad

TPad

TCanvas

TPadGL

TCanvasGL

Inheritance diagram

ROOT-CORE Team 42

3D scenes rendering

TGeo shapes

g3d shapes

3d primitives

3d histograms TBuffer3Dxxxx

Producers: 3D objects describe themselves in
TBuffer3D (vertices, edges, polygons) and
extended classes (TBuffer3DSphere, TBuffer3DTube
etc).

Intermediate 3D object
description classes

TVirtualViewer3D

Consumers: Extract shape description from
TBuffer3D (see concrete implementations)

Geometry Painter
TGeoPainter / TGeometry

ROOT-CORE Team 43

3D Viewers

TVirtualViewer3D

TViewerOpenGL

TViewerX3DTViewer3DPad

3 concrete viewers inherit from the virtual interface TVirtualViewer3D.

ROOT-CORE Team 44

Viewer Infrastructure Changes

3D Buffer Classes

Split into
sections
with flags to
show
validity

Extended classes
with shape specific
section

Producers fill cheap sections automatically and expensive parts (tessellation) on
demand of viewer.
Addition of bounding box, local/master reference frame and translation matrix.

TBuffer3DTube

Core

Raw
Tessellation
Points/Segs/

Polys

Bounding Box

Raw Sizes

Core

Raw
Tessellation
Points/Segs/

Polys

Bounding Box

Raw Sizes

Shape Specific

TBuffer3D

// SECTION: kShapeSpecific
Double_t fRadiusInner; // Inner radius
Double_t fRadiusOuter; // Outer radius
Double_t fHalfLength; // Half length (dz)

ROOT-CORE Team 45

Viewer Infrastructure Changes - cont

TVirtualViewer3D
• Viewer preference for local frame positions – producer shapes not obliged to

meet request.*

• Viewer interest in child objects – should producer send?

• Simple objects: “3D primitive, at this 3D location”

• Placed & Template objects: “Placed copy (with unique ID) of this template
3D primitive” – enables viewer side caching of the unique shapes.
Equivalent to:

TVV3D: Template Placed

Geant4 : Logical Volume Physical Volume

TGeo: Volumes Nodes
* All producing shapes must be able to generate buffer in master reference frame, and all consuming

viewers be capable of displaying them.

ROOT-CORE Team 46

Viewer Infrastructure Changes - cont

Together these allow:

• Filling of only the sections a viewer needs for a specific shape.
• Rejection of objects off screen before tessellation.
• Efficient, high quality native viewer tessellation of supported shapes,

with fall back of producer side tessellation for unsupported one.
• Repeated geometry expansions, with termination on viewer request.
• Various viewer side caching schemes – e.g. retain all large/costly

shapes, extract finer details as current view requires and
performance permits.

• Ensures code outside viewer is free of viewer specific
dependencies/branches.

• == Higher quality, faster rendering and interaction in OpenGL and
high performance viewers, + backward compatibility with pad and
legacy x3d viewer.

ROOT-CORE Team 47

Viewer Infrastructure Changes

TBuffer3D
• Split into sections – core, bounding box, shape specific, raw tessellation

(points/segs/polys) with flags to show validity.

• Extended classes with abstract shape descriptions e.g. TBuffer3DTube:
// SECTION: kShapeSpecific
Double_t fRadiusInner; // Inner radius
Double_t fRadiusOuter; // Outer radius
Double_t fHalfLength; // Half length (dz)

• Producers fill cheap parts automatically and expensive parts (tessellation)
on demand of viewer.

• Addition of bounding box, local/master reference frame and translation
matrix.

ROOT-CORE Team 48

OpenGL Viewer

• In the future will be the main 3D viewer. Has to be updated to
take advantage of the infrastructure changes.

• Use the full power of OpenGL (lights, transparency,
interactivity, anti-aliasing, hardware acceleration …)

• PS/PDF output using gl2ps
• Native rendering of uncut solid spheres and various tubes

already in place.
• Soon composite shape support
In the future:
• Convert to local frame, with template shape and OpenGL

display list caching.
• Level of detail support – adjust tessellation for object size.
• Animation of objects.
• etc

ROOT-CORE Team 1

2D graphics and others issues

ROOT-CORE Team 50

Graphics output

• PostScript: Stable. No major developments foreseen

• PDF: The future. Very likely will replace PS in the medium term.

• SVG: not complete yet. More and more requests.

Graphics outputs can be generate using:

• TAsimage package:
• many pixel formats,

• Works in batch mode,

• Markers are missing,

• Could be use to generate output for ray tracing.

Vector

Pixel

ROOT-CORE Team 51

Astronomers requests

• Reverse Y (and X) axis. This requires changes in many places.

• New projections: AITOFF, MERCATOR etc… It is available for some
representations but still missing for COL plots for instance.

ROOT-CORE Team 52

TLatex

• #ell Calligraphic “l” : l
• #matcal{}: Calligraphic font
• #v{}
• #perthousand{} : ‰
• German umlaut

These symbols are not easy. Either the font is not (yet) in our TTF and
PostScript drivers, or the character is available in one but not it the
other.

ROOT-CORE Team 53

Graphics test suite

• Automatic check: generate PostScript and compare the number of lines
with a reference. Not very precise.

• Visual check: More accurate but need more time and manpower.

ROOT-CORE Team 54

Markers

• We need more markers. The current list is not enough.

• User defined markers

• 3D markers

Markers currently available

ROOT-CORE Team 1

• Ilka Antcheva, Bertrand Bellenot,
Valeri Fine, Valeriy Onuchin, Fons
Rademakers

Graphical User Interface

ROOT-CORE Team 56

Overview

• Main Goal

• GUI Widgets

• Graphics Editor

• GUI Builder

• Undo/Redo Tools

ROOT-CORE Team 57

Main Goal

• Cross-platform GUIs – consistent look everywhere

• Improve the GUI design and performance; modify and iterate as much as
necessary

• Integrate all system components: software, documentation, help functions,
tutorials

• X11

• Win32GDK

• Qt layer – provided as a
standard ROOT “plug-in”
shared library that allows
users to turn it on/off at
run time with no changes
in the user’s code

• All machine dependent low graphics
calls abstracted via TVirtualX

ROOT-CORE Team 58

Current Status
• Based on the XClass library

from Hector Peraza
• Provide standard

components for an
application environment
with windows ‘look and feel’

• Object-oriented, event-
driven programming model

• Containers - use of ROOT
container classes for fast
object look up

• Any widgets can be
extended via inheritance

• Layout managers
• Signals/slots

communication
• Conventional model

GUI Widgets (1)

ROOT-CORE Team 59

GUI Widgets (2)

Next Steps
• Not finished GUI tasks

• Keyboard navigation

menu hot keys

Alt+F pops up File menu

S activate Save - pops a submenu

P does not create c1.ps

dialogs - Enter = OK, Esc = Cancel

combo boxes: up/down arrows,

Home, End, PgUp,
PgDn

• Cleanup tools

ROOT-CORE Team 60

GUI Widgets (3)

• Code optimization
• Layout algorithms

• GUI Dialogs

• Qt layer
• Validation tests of interaction with ROOT GUI classes

with the same ‘look and feel’

• To solve problems with so-called "popup widget", like
menus, drop down combo boxes, etc. and actions that
require full-scale X11-like mouse pointer grabbing

• Complete the reference documentation of GUI
classes

ROOT-CORE Team 61

Graphics Editor (1)
• ROOT graphics editor

can be:

• Embedded –
connected only with
the canvas in the
application window

• Global –

has own application
window and can be
connected to any
created canvas

ROOT-CORE Team 62

Graphics Editor (2)

• Modular – it loads the corresponding object editor TxxxEditor
according to the selected object Txxx in the canvas respecting the class
inheritance.

• Can be extended easily by any user-defined object editor - this makes
GUI design easier and adaptive to the users’ profiles

• Rules to follow:
• Derive the code object editor

from the base class TGedFrame

• Correct naming

• Register the object editor in the
list TClass::fClassEditors

• This way the GUI complexity is
reduced by hiding some GUI
elements and revealing them
when necessary.

ROOT-CORE Team 63

Graphics Editor (3)

• Global graphics editor
• To show the related canvas title

• Close, help buttons

• Include ROOT commands in tool
tips of the GUI widgets

• Hide/Show objects in a canvas

• New object editors:
• TAttPad
• TSpline
• TFn draw panel

• Style manager – summer student
project

ROOT-CORE Team 64

• Tests and validation of the current version

GUI Builder (1)

• Lay out a GUI quickly by
dragging components

• Using Ctrl+S or SaveAs dialog,
users can generate C++ code
in a macro that can be edited
and executed via the CINT
interpreter. It reproduces all
widget in use and the GUI
layout.

ROOT-CORE Team 65

• Next steps – develop a
set of tools for creating
GUIs
• Completing GUI

components for
selection: Button group,
combo/list boxes,
double sliders, list view,
list tree, shutter, etc.

• Tools for signals/slots

• Templates for several
basic types of GUIs (as
tutorials)

GUI Builder (2)

ROOT-CORE Team 66

• Allow users to recover from mistakes - very
important of GUI
• Confirmation of destructive actions: Overwrite, Delete,

etc

• A stack of states/actions to go back

• Tests and validation of TQCommand,
TQCommandHistory, TQUndoManager

Undo/Redo Tools

ROOT-CORE Team 67

GUI HowTo’s and Tutorial

• GUI examples
• In the User’s Guide

• How to examples on the web

• GUI tutorials

• ROOT Graphics Editor
• How to page

• Guides for object editor user interface development

ROOT-CORE Team 68

SEAL-ROOT Math Plans for 2005

• Math work package

• Andras Zsenei, Anna Kreshuk, Lorenzo Moneta, Eddy
Offermann

See separate presentation by Lorenzo

