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OverviewOverview

• Main Goals

• GUI Widgets

• Graphics Editor

• GUI Builder

• Tree Viewer

• Undo/Redo Tools
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Main GoalsMain Goals

• Cross-platform GUIs – consistent look everywhere

• All machine dependent low graphics calls abstracted via TVirtualX
• X11

• Win32GDK

• Qt layer - standard 

ROOT “plug-in” share 

library, allows to be 

turned on/off at run time with 

no changes of the user’s code

• Improve the GUI design and performance; modify and iterate as 
much as necessary 

• Integrate all system components: software, documentation, help 
functions, tutorials
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GUI Widgets (1)GUI Widgets (1)

Current Status

• Based on the XClass 
library from Hector 
Peraza

• Provide standard 
components for 
application 
environment with 
windows ‘look and feel’

• Object-oriented, event-
driven programming 
model
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GUI Widgets (2)GUI Widgets (2)

• Containers - use of ROOT 
container classes for fast 
object look up

• Any widgets can be 
extended via inheritance

• Layout managers

• Signals/slots 
communication

• Conventional model
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GUI Widgets (3)GUI Widgets (3)

Next Steps

• Not finished GUI tasks
• Keyboard navigation

• Menu hot keys: 

+       = pops up File menu 

= Save, pops up a submenu

should create c1.ps 

• Dialogs: 

Enter = OK, Esc = Cancel

• Combo boxes: 

Up/Down arrows, Home, End, PgUp, PgDn

• List view improvements, etc.

• Cleanup tools

FAlt

S

P
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GUI Widgets (4)GUI Widgets (4)

• Code optimization
• Layout algorithms

• GUI Dialogs 

• Qt layer 
• Validation tests of interaction  with ROOT GUI classes with the same ‘look 

and feel’

• To solve problems with so-called "popup widgets",  like menus, drop down 
combo boxes, etc. and actions that require full-scale X11 - like mouse 
pointer grabbing

• To complete the reference documentation of GUI classes
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Graphics Editor (1)Graphics Editor (1)

• ROOT graphics editor can be:
• Embedded – connected only 

with the canvas in the 
application window

• Global – has own application 
window and can be connected 
to any created canvas    (under 
development)
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Graphics Editor (2)Graphics Editor (2)

• Modular – it loads the corresponding object editor xxxEditor 
according to the selected object xxx in the canvas respecting the 
class inheritance.

• Can be extended easily by any user-defined object editor - this 
makes GUI design easier and adaptive to the users’ profiles

• This way the GUI complexity is reduced by hiding some interface 
elements and revealing them when necessary.

• Rules to follow:
• Derive in the code the object editor from the base class TGedFrame

• Correct naming 

• Register the object editor in the list TClass::fClassEditors
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Graphics Editor (3)Graphics Editor (3)

• Different object editors
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Graphics Editor (4)Graphics Editor (4)
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Graphics Editor (5)Graphics Editor (5)

Next Steps

• To include  ROOT commands in 
tool tips of the GUI widgets

• Help

• Global graphics editor 
• To show the related canvas title

• Close button

• Hide/Show objects in a canvas

• New object editors development

• Style manager – summer 
student project

• Fit Panel GUI root[9] gPad->SetLogy(1);
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GUI Builder (1)GUI Builder (1)

• GUI Builder greatly simplifies 
the process of designing GUIs 
based on ROOT widgets’ 
classes.

• Using Ctrl+S or SaveAs dialog, 
users can generate C++ code in 
a macro that can be edited and 
executed via the CINT 
interpreter:

root[0] .x example.C
// transient frame

TGTransientFrame *frame2 = new TGTransientFrame(gClient->GetRoot(),760,590);
// group frame
TGGroupFrame *frame3 = new TGGroupFrame(frame2,"curve");
TGRadioButton *frame4 = new TGRadioButton(frame3,"gaus",10);
frame3->AddFrame(frame4);

frame2->SetWindowName(“Fit Panel");
frame2->MapSubwindows();
frame2->Resize(frame2->GetDefaultSize());
frame2->MapWindow();
}
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GUI Builder (2)GUI Builder (2)

Current status

• Tests and validation of the current version 
• Layout a GUI quickly by dragging widgets, setting layout managers, 

changing options in the right-click context menus.

• Final design can be saved as a C++ macro

Next steps

• To complete the GUI widgets’ palette with combo/list boxes, 
double sliders, list view, list tree, shutters, button group, etc.

• To develop tools for signals/ slots mechanism of communication.

• To provide examples for several basic types of GUIs (as tutorials)
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GUI Builder (3)GUI Builder (3)
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Tree ViewerTree Viewer

• Improvements of the Tree Viewer GUI
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Undo/Redo ToolsUndo/Redo Tools

• Allow users to recover from mistakes - very important part of GUI 
that will provide:
• A stack of states/actions to go back 

• Confirmation of destructive actions: overwrite, delete, etc.

• Main idea: all editing in an application is done by creating 
instances of so-called command objects

• Tests and validation of already implemented classes:
• TQCommand – each command knows how to undo its changes to bring the 

edited object back to its previous state. 

• TQCommandHistory 

• TQUndoManager – recorder of undo and redo operations; it is the 
command history list which can be traversed backwards and upwards  
performing undo/redo operations.


