
ROOT Weekly Meeting 21 March 2005

ROOT Graphical User InterfaceROOT Graphical User Interface

Ilka Antcheva, Bertrand Bellenot, Valeri Fine,
Valeriy Onuchin, Fons Rademakers

Ilka Antcheva ROOT Weekly Meeting 221 March 2005

OverviewOverview

• Main Goals

• GUI Widgets

• Graphics Editor

• GUI Builder

• Tree Viewer

• Undo/Redo Tools

Ilka Antcheva ROOT Weekly Meeting 321 March 2005

Main GoalsMain Goals

• Cross-platform GUIs – consistent look everywhere

• All machine dependent low graphics calls abstracted via TVirtualX
• X11

• Win32GDK

• Qt layer - standard

ROOT “plug-in” share

library, allows to be

turned on/off at run time with

no changes of the user’s code

• Improve the GUI design and performance; modify and iterate as
much as necessary

• Integrate all system components: software, documentation, help
functions, tutorials

Ilka Antcheva ROOT Weekly Meeting 421 March 2005

GUI Widgets (1)GUI Widgets (1)

Current Status

• Based on the XClass
library from Hector
Peraza

• Provide standard
components for
application
environment with
windows ‘look and feel’

• Object-oriented, event-
driven programming
model

Ilka Antcheva ROOT Weekly Meeting 521 March 2005

GUI Widgets (2)GUI Widgets (2)

• Containers - use of ROOT
container classes for fast
object look up

• Any widgets can be
extended via inheritance

• Layout managers

• Signals/slots
communication

• Conventional model

Ilka Antcheva ROOT Weekly Meeting 621 March 2005

GUI Widgets (3)GUI Widgets (3)

Next Steps

• Not finished GUI tasks
• Keyboard navigation

• Menu hot keys:

+ = pops up File menu

= Save, pops up a submenu

should create c1.ps

• Dialogs:

Enter = OK, Esc = Cancel

• Combo boxes:

Up/Down arrows, Home, End, PgUp, PgDn

• List view improvements, etc.

• Cleanup tools

FAlt

S

P

Ilka Antcheva ROOT Weekly Meeting 721 March 2005

GUI Widgets (4)GUI Widgets (4)

• Code optimization
• Layout algorithms

• GUI Dialogs

• Qt layer
• Validation tests of interaction with ROOT GUI classes with the same ‘look

and feel’

• To solve problems with so-called "popup widgets", like menus, drop down
combo boxes, etc. and actions that require full-scale X11 - like mouse
pointer grabbing

• To complete the reference documentation of GUI classes

Ilka Antcheva ROOT Weekly Meeting 821 March 2005

Graphics Editor (1)Graphics Editor (1)

• ROOT graphics editor can be:
• Embedded – connected only

with the canvas in the
application window

• Global – has own application
window and can be connected
to any created canvas (under
development)

Ilka Antcheva ROOT Weekly Meeting 921 March 2005

Graphics Editor (2)Graphics Editor (2)

• Modular – it loads the corresponding object editor xxxEditor
according to the selected object xxx in the canvas respecting the
class inheritance.

• Can be extended easily by any user-defined object editor - this
makes GUI design easier and adaptive to the users’ profiles

• This way the GUI complexity is reduced by hiding some interface
elements and revealing them when necessary.

• Rules to follow:
• Derive in the code the object editor from the base class TGedFrame

• Correct naming

• Register the object editor in the list TClass::fClassEditors

Ilka Antcheva ROOT Weekly Meeting 1021 March 2005

Graphics Editor (3)Graphics Editor (3)

• Different object editors

Ilka Antcheva ROOT Weekly Meeting 1121 March 2005

Graphics Editor (4)Graphics Editor (4)

Ilka Antcheva ROOT Weekly Meeting 1221 March 2005

Graphics Editor (5)Graphics Editor (5)

Next Steps

• To include ROOT commands in
tool tips of the GUI widgets

• Help

• Global graphics editor
• To show the related canvas title

• Close button

• Hide/Show objects in a canvas

• New object editors development

• Style manager – summer
student project

• Fit Panel GUI root[9] gPad->SetLogy(1);

Ilka Antcheva ROOT Weekly Meeting 1321 March 2005

GUI Builder (1)GUI Builder (1)

• GUI Builder greatly simplifies
the process of designing GUIs
based on ROOT widgets’
classes.

• Using Ctrl+S or SaveAs dialog,
users can generate C++ code in
a macro that can be edited and
executed via the CINT
interpreter:

root[0] .x example.C
// transient frame

TGTransientFrame *frame2 = new TGTransientFrame(gClient->GetRoot(),760,590);
// group frame
TGGroupFrame *frame3 = new TGGroupFrame(frame2,"curve");
TGRadioButton *frame4 = new TGRadioButton(frame3,"gaus",10);
frame3->AddFrame(frame4);

frame2->SetWindowName(“Fit Panel");
frame2->MapSubwindows();
frame2->Resize(frame2->GetDefaultSize());
frame2->MapWindow();
}

Ilka Antcheva ROOT Weekly Meeting 1421 March 2005

GUI Builder (2)GUI Builder (2)

Current status

• Tests and validation of the current version
• Layout a GUI quickly by dragging widgets, setting layout managers,

changing options in the right-click context menus.

• Final design can be saved as a C++ macro

Next steps

• To complete the GUI widgets’ palette with combo/list boxes,
double sliders, list view, list tree, shutters, button group, etc.

• To develop tools for signals/ slots mechanism of communication.

• To provide examples for several basic types of GUIs (as tutorials)

Ilka Antcheva ROOT Weekly Meeting 1521 March 2005

GUI Builder (3)GUI Builder (3)

Ilka Antcheva ROOT Weekly Meeting 1621 March 2005

Tree ViewerTree Viewer

• Improvements of the Tree Viewer GUI

Ilka Antcheva ROOT Weekly Meeting 1721 March 2005

Undo/Redo ToolsUndo/Redo Tools

• Allow users to recover from mistakes - very important part of GUI
that will provide:
• A stack of states/actions to go back

• Confirmation of destructive actions: overwrite, delete, etc.

• Main idea: all editing in an application is done by creating
instances of so-called command objects

• Tests and validation of already implemented classes:
• TQCommand – each command knows how to undo its changes to bring the

edited object back to its previous state.

• TQCommandHistory

• TQUndoManager – recorder of undo and redo operations; it is the
command history list which can be traversed backwards and upwards
performing undo/redo operations.

