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Math Work package
• Responsability for this work package: 

• Basic Mathematical functions
• TMath and SEAL MathCore

• Functions and Fitting
• Parameteric function classes (TF1,...)
• Minuit, Fumili, Linear and Robust fitters, quadratic prog.

• Random Numbers
• Linear Algebra
• Physics Vector

• Also, but not considered now: 
• Histograms
• Statistics  (confidence level )
• Neural Net, multivariate analysis, etc..
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Outline
• Compare the contents of SEAL and ROOT
• Preliminary proposal for SEAL - ROOT integration 

and evolution for short-medium term
• MathCore vs TMath
• Improvements for Function classes (TF1)

• integration of MathCore numerical algorithms
• Fitting and Minimization

• integration of SEAL Minuit and SEAL Fitting framework

• Review CLHEP and compare with ROOT
• Random numbers
• Physics Vectors
• Linear Algebra

• Possible proposal on how to proceed with CLHEP
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SEAL Math Lib Contents
• MathCore

• library with the basic Math functionality
• used GSL in implementation
• interfaces could be re-implemented using another 

library
• design reviewed by CMS

• Minuit
• re-implementation of Minuit in C++ 
• stand-alone package (no ext. dependencies)

• FML (Fitting and Minimization Library)
• defines some generic interfaces for fitting and 

minimization
• use Minuit
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SEAL, CLHEP and ROOT Math Libraries
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MathCore
• MathCore Contents: 

•(see http://seal.web.cern.ch/seal/MathLibs/MathCore/html/index.html )
• Mathematical functions (implemented as free function in 

mathlib namespace) : 
• special functions like Bessel, Beta, Gamma, ... (~ 20 func.)
• statistics functions: pdf, cumulative probability 

distributions and their inverse (~ 50 func.)
• numerical algorithms implemented using GSL

• integration (6 alg.)
• differentiation (3 alg.)
• root finders (6 alg.)
• 1D minimization (2 alg.)
• interpolation (4 alg.)

• Generic function classes and interfaces
• Generic function interface
• Parametric function interface 
• Concrete classes (Polynomial function, ..) 
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TMath Contents

• TMath namespace: 
• Numerical constants (Pi, e, h, etc...)
• Trigonometric functions
• Elementary functions
• Other basic functions (abs, min, max, range, sign)
• Min and max of arrays
• Statistics: mean/rms of sequences (arrays)
• algorithm (binary search, hashing, sorting)
• vector operations (cross, normalize)
• Special functions (Bessel, Erf, Beta, Gamma, etc...)
• Statistical functions (Poisson, Prob, Student, F dist, 

Gauss, BreitWigner, Landau etc....)
• Kolmogorov probability
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Differences TMath-MathCore
• Special Functions:

• Both have most used ones : Beta, Gamma, Erf, ... 
• MathCore has more complete set functions :  

• all Bessel types and for any order nu
• Legendre polynomials, elliptic integrals, hypergeometric, 

exponential integral and Riemann
• Statistical Functions: 

• Both have most used functions 
• normal, Chi2, Binomial, Poisson, Gamma, Cauchy, t, F 

dist.)
• MathCore has for each one pdf, cdf and their inverse
• TMath has in addition 

• Incomplete Beta, Kolmogorov prob., Struve and Voigt 
functions 
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Proposal for TMath
• Changes to TMath in the short term: 

• Have union of all functions TMath - MathCore
• Separate mathematical function in a different 

namespace, CVS repository and library 
• Have a Math library which can be built independently
• for ROOT distributions, we might include still in the 

ROOT libCore 
• Math functions need to be in the libCore ?

• some math functions (i.e. Prob) are used only by Hist and 
Physics libraries, 

• others (i.e. Bessel) are not used at all within ROOT
• Change interface to the one proposed to the C++ 

standard (used in SEAL MathCore)
• Define consistent names for statistical functions

• Keep current TMath for backward compatibility
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Example for Special Functions
• Have a separate namespace: 

• easy transition in the future when they will be in std 
namespace 

• Example of new interfaces and how to keep 
backward compatibility
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Function Implementation
• Which implementation to use ? 

• MathCore is a wrapper to GSL function

• GSL is good but we need to distribute with GPL license 
• We should consider also alternative implementations
• cephes  (available at netlib: http://www.netlib.org/cephes/)

• C library with single, long and long double 
implementations for special functions 

• open source free license
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Additional TMath Changes

• Longer term modifications : 
• use STL for sorting algorithm, min/max etc.

• evaluate the performances, 
• and in case drop old ones

• use in addition std::vector in interface instead of C 
arrays
• performances are the same

• Separate also statistic functions acting on containers:  
• mean, RMS, median, skewness
• have template functions for all of them  
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GSL
• What to do with GSL ? 

• Good library but license problem 
• GPL requires us to distribute with GPL license
• no problem for our academic use, but problem comes if the 

software is then used in commercial applications

• Have a C++ Wrapper (like in MathCore) hiding the 
implementation

• A possible solution could be to have alternative 
implementations
• many already exist (i.e. cephes), it should not be so much 

more work
• have a compilation flag to build with or without GSL ?
• HEP users build with GSL, while others use alternative ?

• it would be difficult to manage for the core libs
• To avoid external dependency we could distributed 

what we use of GSL together with our Software
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Function Classes in ROOT

• TF1, TF2, TF3, TF12
• parametric 1, 2 and 3D functions and projection

• various mathematical functionality (Eval, Derivative, 
Integral, getMin/Max, getX, etc..) 

• Fitting functionality ( GetChi2(), Fix/Release Parameters)
• Generate random numbers 
• Plotting functionality (Paint() )

• TFormula 
• to evaluate simple expression and pre-defined 

functions (Gauss, Poly, Expo, etc...)
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Proposal for Functions
• Short term: 

• separate plotting functionality 
• make independent of plotting ( use VirtualHistPainter )

• Medium Term:
• Separate implementation of the numerical algorithms 

from the function
• have integration, derivation in separate classes 

• interfaces with different algorithm implementations
• combine with what is provided in MathCore based on 

GSL
• Redesign Mathematical function classes 

• some work started in MathCore
• defines new function classes and interfaces:  

• GeneralFunction , ParametrizedFunction, Pdf
• support arithmetic operations, composition, convolution

• improve TFormula  (longer term)
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Fitting and Minimization
• Fitting in ROOT goes through the TVirtualFitter

• abstract class  designed for Minuit
• mixes fitting and minimization 

• Have implementations based on TFitter (TMinuit), 
TLinearFitter and TFumili
• lots of repetition in the code (for example in fixing/setting 

parameters) 
• Missing a real framework for Fitting and Minimization

• people implemented additional packages (i.e. RooFit)

• In SEAL MathLibs we have a fitting framework
• FML complemented with new Minuit
• we should start from this and combine with the 

proposed re-design of the Function classes
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SEAL Fitting packages
• MINUIT

• re-implementation of Minuit in C++ 
• added new functionality 

• Fumili, single side bounds
• stand-alone package (no external dependency)

• FML (Fitting and Minimization Library)
• provides general way of fitting data using various fitting 

methods and minimization engines
• defines generic interfaces for fitting and minimization

• have minimizer implementations based on new Minuit 
• for testing we have implementations based on F77 Minuit 

and NagC
• support for standard fitting methods (Chi2, M.L., etc..)
• very efficient in term of performances
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Proposal for Fitting
• Short term : 

• have Fitter class using SEAL Minuit implementing the 
TVirtualFitter interface

• basically already done in the past by Matthias Winkler
• make it default engine ? (need more evaluation)

• Medium/Long term:
• integrate FML in ROOT, redesigning and adapting to 

the new Function classes
• have clear separation for Fitting and Minimization

• separate interfaces as in SEAL FML 
• make best solution to integrate all existing 

implementations:  
• Linear and Robust Fitters, Fumili, Minuit and quadratic 

optimizers 
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Fitting and Functions design ideas
• Have various Fitting classes: 

• Fitter, FitData, FitParameters, FitResult, etc.. 
• fitter gets the input data

• option to copy in (often more efficient) or able to iterate 
on original container 

• builds from ModelFunction an objective function 
according to method: 
• chi2, binned and unbinned maximum likelihood, etc..

• Use facilities from Function classes 
• combining functions with addition, convolution etc..
• use pre-defined pdf (like in RooFit)

• have class containing all fit result (parameters, error 
matrix, chi2, ndf)  

• Minimization (optimization) classes:   
• find minimum of a multidim. function: 

• Minuit, quadratic programming
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CLHEP

• CLHEP packages: 
• Random ( and Random Objects)
• Matrix 
• Vector
• Geometry
• HepPDT and HepMC  (keep separate) 
• Evaluator ( keep separate, not needed) 
• Generic Functions
• Units 
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CLHEP Exp. Feedback
• Feedback received in 2003 from CLHEP workshop 

•(see http://proj-clhep.web.cern.ch/proj-clhep/Workshop-2003/CLHEP_LHCfeedback.pdf )

•CLHEP scope is not clear defined 
• seems more an heterogeneous collection 

•Random : 
• missing the saving of generator seeds
• statics variable (engines) give problems on Windows

•Matrix
• poor performances for symmetric matrices (not clear 

which operations) 
• some numerical instabilities 
• dependent on Random
• missing constructor taking Hep3Vector
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CLHEP Exp. Feedback (2)

• Vector (Physics Vector)
• most used package 
• Comments received: 

• too bloated interface
• desire to have it template on scalar type 
• not seed for public setter methods
• confusion between classes in Vector and Geometry 

packages
• Alternative proposal is a package used by CMS 

tracking and muon
• 3D, 2D Vector classes Points classes 
• separation points-vector as distinct types
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Random (CLHEP vs ROOT)
• CLHEP: 

• Nice separation engine - distributions
• abstract class for Engine and various implementations
• singleton class, HepRandom for default engine 

(HepJames)
• classes for each distribution (RandFlat, RandGauss, etc..)

• ROOT
• TRandom base class with default engine 

• rndm() from Cernlib 
• fast generator but with small period (10**8) and obsolete in Cernlib  

• base class defines  functionality for random distributions
• possibility to store in a file (TRandom.Write() ) 

• TRandom2 ( based on rdm2() ) and TRandom3  ( based 
on Mersenne Twister (623 dim.)
• both inherit from TRandom
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CLHEP-ROOT Random Engines
Random Number generators CLHEPCLHEP ROOTROOT

Rand x

Drand48 x

DualRand x

Hard160 and Hard288 x

HepJamesRandom (RANMAR) x

Mersenne Twister x x

RanLux and RanLux64 x

Ranshi x

TripleRand (DualRand + Hard288) x

rndm x

rndm2 x
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CLHEP-ROOT Random Distributions

Random Distributions CLHEPCLHEP ROOTROOT
Flat x x
Exponential x x
Gaussian x x
Breit-Wigner x x
ChiSquare x
Gamma x
Landau x x
Poisson x x
Binomial x x
Student t x
Sphere x
Histogram from array of numbers from TH1
General Function (*) from array of numbers from TF1 (**)

(*) Only for getting random numbers in a limited range (**) possible to use all TMath functions
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Physics Vectors

• CLHEP Vector package
• not clear hierarchy for Vector, 

Rotation and Boost classes 
• multitude of constructors and 

member functions
• ROOT Physics Vectors

• flat hierarchy:  
• TVector2 
• TVector3
• TLorentzVector
• TRotation
• TLorentzRotation
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CLHEP vs ROOT (Physics Vectors)
• Hep3Vector vs TVector3

• Hep3Vector has more methods (too much repetition)
• more setters, getX() and X()   
• define nearness and parallelism (need to be in base class ?)
• can be a boost

• TVector3
• has Pt(), Px(), ....

• HepLorentzVector vs TLorentzVector
• HepLorentzVector has more methods: 

• boost functionality, nearness and parallelism
• ordering 
• restMass(), euclideanNorm()

• TLorentzVector 
• couple of more setters
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CLHEP vs ROOT (Physics Vectors)

• HepRotation vs TRotation
• HepRotation

• different classes for X,Y,Z rotations
• additional copy constructors and transform()
• awkward methods to get columns and rows

• colX(), colY(),... and  col1(), col2()
• define nearness and ordering

• HepLorentzRotation vs TLorentzRotation
• HepLorentzRotation

• same as for HepRotation
• decomposition as Boost + 3D Rotation
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Linear Algebra
• CLHEP classes: 

• HepGenMatrix
• HepMatrix
• HepSymMatrix
• HepDiagMatrix   ( should not derive from SymMatrix ? )
• HepVector• ROOT LA classes: 

• TMatrixDBase   (TMatrixFBase)
• TMatrixD   (TMatrixF)
• TMatrixDSym (TMatrixFSym)
• TMatrixDSparse• TVectorD (TVectorF) 

• many utility classes and more specialized matrix 
classes

• Decomposition classes
• LU, QR, SVD, Choleski



30Lorenzo Moneta,     ROOT Core Software Meeting,  18 March 2005

Linear Algebra (2)
• More functionality in ROOT

• Decomposition for solving LA systems
• Support for Sparse matrix
• concept of LazyMatrix for minimizing copying

• Both CLHEP  optimized support for small matrices
• pre-allocation on the stack up to 6x6 matrix
• optimized inversion algorithm for small matrix (except 

2x2)
• Comments on ROOT :

• No Decomposition for TMatrixF
• missing support for complex matrices
• duplication TMatrixF - TMatrixD

• move to templates ? 
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CLHEP Proposal 

• ROOT basically contains all CLHEP functionality and 
in some case even more

• Implementations are in same case identical
• Non sense for long term maintenance having the two 

separate packages 
• Move in the direction of a single new library
• Expect that experiments will agree to use new library 

• If new classes do not have dependency on other ROOT 
library

• need to remove TObject inheritance
• several possible technical solutions 
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Possible Solution

• Method signature in the new Math classes is 
ROOT-like or CLHEP-like ? 
• it is more a political choice

• If are CLHEP-like, implementation in T-classes is 
inlined using methods of the base class  

MathVectorMathVector
TObjectTObject

TVectorTVector
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Proposal for  Random
• Short Term: 

• make TRandom3 the default engine and rename it
• remove TRandom2 ?
• add some other engine from CLHEP (RanLux, HepJames) 
• add other distributions (taking from CLHEP and/or GSL): 

• Gamma, Chi2, LogNormal, F-dist, t-dist, geometric, etc..
• medium/long term: 

• Evaluate random number proposal to C++ standard
• template classes on Engines and Distribution Type

•template<class Engine, class Distribution>
•class variate_generator {

•result_type operator() () ;     // for generating random numbers 
•}; 

• a similar implementation already exists in Boost
• re-implement from CLHEP using the new interface ? 

• wrapper in ROOT based on that library ? 



34Lorenzo Moneta,     ROOT Core Software Meeting,  18 March 2005

Proposal for Vector and LA
• Remove from the ROOT Physics and Linear 

Algebra classes the TObject inheritance
• have an independent Physics and Matrix library

• Physics Vector
• add missing functionality present in CLHEP

• make nearness concept in a separte class ? 
• move to a new cleaner interface ?

• problem of preserving backward compatibility

• Linear Algebra
• based in the short term  on ROOT implementation 
• make more detailed evaluation studies with other Linear 

Algebra packages
• consider move to template classes for adding support for 

complex matrices
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Proposed new Math Structure


