
SEAL-ROOT Math
Plans for 2005

Math work package

Andras Zsenei, Anna Kreshuk, Lorenzo Moneta, Eddy Offermann

ROOT Core Software Meeting, 18 March, 2005

2Lorenzo Moneta, ROOT Core Software Meeting, 18 March 2005

Math Work package
• Responsability for this work package:

• Basic Mathematical functions
• TMath and SEAL MathCore

• Functions and Fitting
• Parameteric function classes (TF1,...)
• Minuit, Fumili, Linear and Robust fitters, quadratic prog.

• Random Numbers
• Linear Algebra
• Physics Vector

• Also, but not considered now:
• Histograms
• Statistics (confidence level)
• Neural Net, multivariate analysis, etc..

3Lorenzo Moneta, ROOT Core Software Meeting, 18 March 2005

Outline
• Compare the contents of SEAL and ROOT
• Preliminary proposal for SEAL - ROOT integration

and evolution for short-medium term
• MathCore vs TMath
• Improvements for Function classes (TF1)

• integration of MathCore numerical algorithms
• Fitting and Minimization

• integration of SEAL Minuit and SEAL Fitting framework

• Review CLHEP and compare with ROOT
• Random numbers
• Physics Vectors
• Linear Algebra

• Possible proposal on how to proceed with CLHEP

4Lorenzo Moneta, ROOT Core Software Meeting, 18 March 2005

SEAL Math Lib Contents
• MathCore

• library with the basic Math functionality
• used GSL in implementation
• interfaces could be re-implemented using another

library
• design reviewed by CMS

• Minuit
• re-implementation of Minuit in C++
• stand-alone package (no ext. dependencies)

• FML (Fitting and Minimization Library)
• defines some generic interfaces for fitting and

minimization
• use Minuit

5Lorenzo Moneta, ROOT Core Software Meeting, 18 March 2005

SEAL, CLHEP and ROOT Math Libraries

6Lorenzo Moneta, ROOT Core Software Meeting, 18 March 2005

MathCore
• MathCore Contents:

•(see http://seal.web.cern.ch/seal/MathLibs/MathCore/html/index.html)
• Mathematical functions (implemented as free function in

mathlib namespace) :
• special functions like Bessel, Beta, Gamma, ... (~ 20 func.)
• statistics functions: pdf, cumulative probability

distributions and their inverse (~ 50 func.)
• numerical algorithms implemented using GSL

• integration (6 alg.)
• differentiation (3 alg.)
• root finders (6 alg.)
• 1D minimization (2 alg.)
• interpolation (4 alg.)

• Generic function classes and interfaces
• Generic function interface
• Parametric function interface
• Concrete classes (Polynomial function, ..)

7Lorenzo Moneta, ROOT Core Software Meeting, 18 March 2005

TMath Contents

• TMath namespace:
• Numerical constants (Pi, e, h, etc...)
• Trigonometric functions
• Elementary functions
• Other basic functions (abs, min, max, range, sign)
• Min and max of arrays
• Statistics: mean/rms of sequences (arrays)
• algorithm (binary search, hashing, sorting)
• vector operations (cross, normalize)
• Special functions (Bessel, Erf, Beta, Gamma, etc...)
• Statistical functions (Poisson, Prob, Student, F dist,

Gauss, BreitWigner, Landau etc....)
• Kolmogorov probability

8Lorenzo Moneta, ROOT Core Software Meeting, 18 March 2005

Differences TMath-MathCore
• Special Functions:

• Both have most used ones : Beta, Gamma, Erf, ...
• MathCore has more complete set functions :

• all Bessel types and for any order nu
• Legendre polynomials, elliptic integrals, hypergeometric,

exponential integral and Riemann
• Statistical Functions:

• Both have most used functions
• normal, Chi2, Binomial, Poisson, Gamma, Cauchy, t, F

dist.)
• MathCore has for each one pdf, cdf and their inverse
• TMath has in addition

• Incomplete Beta, Kolmogorov prob., Struve and Voigt
functions

9Lorenzo Moneta, ROOT Core Software Meeting, 18 March 2005

Proposal for TMath
• Changes to TMath in the short term:

• Have union of all functions TMath - MathCore
• Separate mathematical function in a different

namespace, CVS repository and library
• Have a Math library which can be built independently
• for ROOT distributions, we might include still in the

ROOT libCore
• Math functions need to be in the libCore ?

• some math functions (i.e. Prob) are used only by Hist and
Physics libraries,

• others (i.e. Bessel) are not used at all within ROOT
• Change interface to the one proposed to the C++

standard (used in SEAL MathCore)
• Define consistent names for statistical functions

• Keep current TMath for backward compatibility

10Lorenzo Moneta, ROOT Core Software Meeting, 18 March 2005

Example for Special Functions
• Have a separate namespace:

• easy transition in the future when they will be in std
namespace

• Example of new interfaces and how to keep
backward compatibility

11Lorenzo Moneta, ROOT Core Software Meeting, 18 March 2005

Function Implementation
• Which implementation to use ?

• MathCore is a wrapper to GSL function

• GSL is good but we need to distribute with GPL license
• We should consider also alternative implementations
• cephes (available at netlib: http://www.netlib.org/cephes/)

• C library with single, long and long double
implementations for special functions

• open source free license

12Lorenzo Moneta, ROOT Core Software Meeting, 18 March 2005

Additional TMath Changes

• Longer term modifications :
• use STL for sorting algorithm, min/max etc.

• evaluate the performances,
• and in case drop old ones

• use in addition std::vector in interface instead of C
arrays
• performances are the same

• Separate also statistic functions acting on containers:
• mean, RMS, median, skewness
• have template functions for all of them

13Lorenzo Moneta, ROOT Core Software Meeting, 18 March 2005

GSL
• What to do with GSL ?

• Good library but license problem
• GPL requires us to distribute with GPL license
• no problem for our academic use, but problem comes if the

software is then used in commercial applications

• Have a C++ Wrapper (like in MathCore) hiding the
implementation

• A possible solution could be to have alternative
implementations
• many already exist (i.e. cephes), it should not be so much

more work
• have a compilation flag to build with or without GSL ?
• HEP users build with GSL, while others use alternative ?

• it would be difficult to manage for the core libs
• To avoid external dependency we could distributed

what we use of GSL together with our Software

14Lorenzo Moneta, ROOT Core Software Meeting, 18 March 2005

Function Classes in ROOT

• TF1, TF2, TF3, TF12
• parametric 1, 2 and 3D functions and projection

• various mathematical functionality (Eval, Derivative,
Integral, getMin/Max, getX, etc..)

• Fitting functionality (GetChi2(), Fix/Release Parameters)
• Generate random numbers
• Plotting functionality (Paint())

• TFormula
• to evaluate simple expression and pre-defined

functions (Gauss, Poly, Expo, etc...)

15Lorenzo Moneta, ROOT Core Software Meeting, 18 March 2005

Proposal for Functions
• Short term:

• separate plotting functionality
• make independent of plotting (use VirtualHistPainter)

• Medium Term:
• Separate implementation of the numerical algorithms

from the function
• have integration, derivation in separate classes

• interfaces with different algorithm implementations
• combine with what is provided in MathCore based on

GSL
• Redesign Mathematical function classes

• some work started in MathCore
• defines new function classes and interfaces:

• GeneralFunction , ParametrizedFunction, Pdf
• support arithmetic operations, composition, convolution

• improve TFormula (longer term)

16Lorenzo Moneta, ROOT Core Software Meeting, 18 March 2005

Fitting and Minimization
• Fitting in ROOT goes through the TVirtualFitter

• abstract class designed for Minuit
• mixes fitting and minimization

• Have implementations based on TFitter (TMinuit),
TLinearFitter and TFumili
• lots of repetition in the code (for example in fixing/setting

parameters)
• Missing a real framework for Fitting and Minimization

• people implemented additional packages (i.e. RooFit)

• In SEAL MathLibs we have a fitting framework
• FML complemented with new Minuit
• we should start from this and combine with the

proposed re-design of the Function classes

17Lorenzo Moneta, ROOT Core Software Meeting, 18 March 2005

SEAL Fitting packages
• MINUIT

• re-implementation of Minuit in C++
• added new functionality

• Fumili, single side bounds
• stand-alone package (no external dependency)

• FML (Fitting and Minimization Library)
• provides general way of fitting data using various fitting

methods and minimization engines
• defines generic interfaces for fitting and minimization

• have minimizer implementations based on new Minuit
• for testing we have implementations based on F77 Minuit

and NagC
• support for standard fitting methods (Chi2, M.L., etc..)
• very efficient in term of performances

18Lorenzo Moneta, ROOT Core Software Meeting, 18 March 2005

Proposal for Fitting
• Short term :

• have Fitter class using SEAL Minuit implementing the
TVirtualFitter interface

• basically already done in the past by Matthias Winkler
• make it default engine ? (need more evaluation)

• Medium/Long term:
• integrate FML in ROOT, redesigning and adapting to

the new Function classes
• have clear separation for Fitting and Minimization

• separate interfaces as in SEAL FML
• make best solution to integrate all existing

implementations:
• Linear and Robust Fitters, Fumili, Minuit and quadratic

optimizers

19Lorenzo Moneta, ROOT Core Software Meeting, 18 March 2005

Fitting and Functions design ideas
• Have various Fitting classes:

• Fitter, FitData, FitParameters, FitResult, etc..
• fitter gets the input data

• option to copy in (often more efficient) or able to iterate
on original container

• builds from ModelFunction an objective function
according to method:
• chi2, binned and unbinned maximum likelihood, etc..

• Use facilities from Function classes
• combining functions with addition, convolution etc..
• use pre-defined pdf (like in RooFit)

• have class containing all fit result (parameters, error
matrix, chi2, ndf)

• Minimization (optimization) classes:
• find minimum of a multidim. function:

• Minuit, quadratic programming

20Lorenzo Moneta, ROOT Core Software Meeting, 18 March 2005

CLHEP

• CLHEP packages:
• Random (and Random Objects)
• Matrix
• Vector
• Geometry
• HepPDT and HepMC (keep separate)
• Evaluator (keep separate, not needed)
• Generic Functions
• Units

21Lorenzo Moneta, ROOT Core Software Meeting, 18 March 2005

CLHEP Exp. Feedback
• Feedback received in 2003 from CLHEP workshop

•(see http://proj-clhep.web.cern.ch/proj-clhep/Workshop-2003/CLHEP_LHCfeedback.pdf)

•CLHEP scope is not clear defined
• seems more an heterogeneous collection

•Random :
• missing the saving of generator seeds
• statics variable (engines) give problems on Windows

•Matrix
• poor performances for symmetric matrices (not clear

which operations)
• some numerical instabilities
• dependent on Random
• missing constructor taking Hep3Vector

22Lorenzo Moneta, ROOT Core Software Meeting, 18 March 2005

CLHEP Exp. Feedback (2)

• Vector (Physics Vector)
• most used package
• Comments received:

• too bloated interface
• desire to have it template on scalar type
• not seed for public setter methods
• confusion between classes in Vector and Geometry

packages
• Alternative proposal is a package used by CMS

tracking and muon
• 3D, 2D Vector classes Points classes
• separation points-vector as distinct types

23Lorenzo Moneta, ROOT Core Software Meeting, 18 March 2005

Random (CLHEP vs ROOT)
• CLHEP:

• Nice separation engine - distributions
• abstract class for Engine and various implementations
• singleton class, HepRandom for default engine

(HepJames)
• classes for each distribution (RandFlat, RandGauss, etc..)

• ROOT
• TRandom base class with default engine

• rndm() from Cernlib
• fast generator but with small period (10**8) and obsolete in Cernlib

• base class defines functionality for random distributions
• possibility to store in a file (TRandom.Write())

• TRandom2 (based on rdm2()) and TRandom3 (based
on Mersenne Twister (623 dim.)
• both inherit from TRandom

24Lorenzo Moneta, ROOT Core Software Meeting, 18 March 2005

CLHEP-ROOT Random Engines
Random Number generators CLHEPCLHEP ROOTROOT

Rand x

Drand48 x

DualRand x

Hard160 and Hard288 x

HepJamesRandom (RANMAR) x

Mersenne Twister x x

RanLux and RanLux64 x

Ranshi x

TripleRand (DualRand + Hard288) x

rndm x

rndm2 x

25Lorenzo Moneta, ROOT Core Software Meeting, 18 March 2005

CLHEP-ROOT Random Distributions

Random Distributions CLHEPCLHEP ROOTROOT
Flat x x
Exponential x x
Gaussian x x
Breit-Wigner x x
ChiSquare x
Gamma x
Landau x x
Poisson x x
Binomial x x
Student t x
Sphere x
Histogram from array of numbers from TH1
General Function (*) from array of numbers from TF1 (**)

(*) Only for getting random numbers in a limited range (**) possible to use all TMath functions

26Lorenzo Moneta, ROOT Core Software Meeting, 18 March 2005

Physics Vectors

• CLHEP Vector package
• not clear hierarchy for Vector,

Rotation and Boost classes
• multitude of constructors and

member functions
• ROOT Physics Vectors

• flat hierarchy:
• TVector2
• TVector3
• TLorentzVector
• TRotation
• TLorentzRotation

27Lorenzo Moneta, ROOT Core Software Meeting, 18 March 2005

CLHEP vs ROOT (Physics Vectors)
• Hep3Vector vs TVector3

• Hep3Vector has more methods (too much repetition)
• more setters, getX() and X()
• define nearness and parallelism (need to be in base class ?)
• can be a boost

• TVector3
• has Pt(), Px(),

• HepLorentzVector vs TLorentzVector
• HepLorentzVector has more methods:

• boost functionality, nearness and parallelism
• ordering
• restMass(), euclideanNorm()

• TLorentzVector
• couple of more setters

28Lorenzo Moneta, ROOT Core Software Meeting, 18 March 2005

CLHEP vs ROOT (Physics Vectors)

• HepRotation vs TRotation
• HepRotation

• different classes for X,Y,Z rotations
• additional copy constructors and transform()
• awkward methods to get columns and rows

• colX(), colY(),... and col1(), col2()
• define nearness and ordering

• HepLorentzRotation vs TLorentzRotation
• HepLorentzRotation

• same as for HepRotation
• decomposition as Boost + 3D Rotation

29Lorenzo Moneta, ROOT Core Software Meeting, 18 March 2005

Linear Algebra
• CLHEP classes:

• HepGenMatrix
• HepMatrix
• HepSymMatrix
• HepDiagMatrix (should not derive from SymMatrix ?)
• HepVector• ROOT LA classes:

• TMatrixDBase (TMatrixFBase)
• TMatrixD (TMatrixF)
• TMatrixDSym (TMatrixFSym)
• TMatrixDSparse• TVectorD (TVectorF)

• many utility classes and more specialized matrix
classes

• Decomposition classes
• LU, QR, SVD, Choleski

30Lorenzo Moneta, ROOT Core Software Meeting, 18 March 2005

Linear Algebra (2)
• More functionality in ROOT

• Decomposition for solving LA systems
• Support for Sparse matrix
• concept of LazyMatrix for minimizing copying

• Both CLHEP optimized support for small matrices
• pre-allocation on the stack up to 6x6 matrix
• optimized inversion algorithm for small matrix (except

2x2)
• Comments on ROOT :

• No Decomposition for TMatrixF
• missing support for complex matrices
• duplication TMatrixF - TMatrixD

• move to templates ?

31Lorenzo Moneta, ROOT Core Software Meeting, 18 March 2005

CLHEP Proposal

• ROOT basically contains all CLHEP functionality and
in some case even more

• Implementations are in same case identical
• Non sense for long term maintenance having the two

separate packages
• Move in the direction of a single new library
• Expect that experiments will agree to use new library

• If new classes do not have dependency on other ROOT
library

• need to remove TObject inheritance
• several possible technical solutions

32Lorenzo Moneta, ROOT Core Software Meeting, 18 March 2005

Possible Solution

• Method signature in the new Math classes is
ROOT-like or CLHEP-like ?
• it is more a political choice

• If are CLHEP-like, implementation in T-classes is
inlined using methods of the base class

MathVectorMathVector
TObjectTObject

TVectorTVector

33Lorenzo Moneta, ROOT Core Software Meeting, 18 March 2005

Proposal for Random
• Short Term:

• make TRandom3 the default engine and rename it
• remove TRandom2 ?
• add some other engine from CLHEP (RanLux, HepJames)
• add other distributions (taking from CLHEP and/or GSL):

• Gamma, Chi2, LogNormal, F-dist, t-dist, geometric, etc..
• medium/long term:

• Evaluate random number proposal to C++ standard
• template classes on Engines and Distribution Type

•template<class Engine, class Distribution>
•class variate_generator {

•result_type operator() () ; // for generating random numbers
•};

• a similar implementation already exists in Boost
• re-implement from CLHEP using the new interface ?

• wrapper in ROOT based on that library ?

34Lorenzo Moneta, ROOT Core Software Meeting, 18 March 2005

Proposal for Vector and LA
• Remove from the ROOT Physics and Linear

Algebra classes the TObject inheritance
• have an independent Physics and Matrix library

• Physics Vector
• add missing functionality present in CLHEP

• make nearness concept in a separte class ?
• move to a new cleaner interface ?

• problem of preserving backward compatibility

• Linear Algebra
• based in the short term on ROOT implementation
• make more detailed evaluation studies with other Linear

Algebra packages
• consider move to template classes for adding support for

complex matrices

35Lorenzo Moneta, ROOT Core Software Meeting, 18 March 2005

Proposed new Math Structure

