

> Links between fundamental and applied research in the field of nuclear data

> > Jan Blomgren

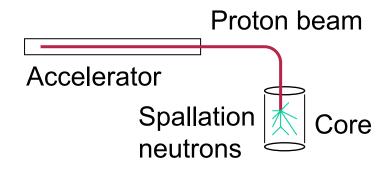
Department of Neutron Research

Uppsala university, Sweden

New nuclear applications

Large scale: Transmutation of nuclear waste Electronics failures by cosmic neutrons

Smaller:Fast-neutron cancer therapyDosimetry for airfare


Always there: Fundamental nuclear physics

Transmutation

Nuclear waste can be destroyed in the lab

Possible also at industry scale?

Up to now: Cross sections for design and assessment Trends:

- Cross sections above 100 MeV
- Integral tests above 70 MeV
- Technical development (ADS diagnostics)

Electronics failures

Cosmic-ray neutrons induce bit flips Terminate silicon technology? Commercial activity

Trends:

Rapidly increasing problem

New worries: Needs:

Aims:

Aviation since 10 years Now also ground level: 1 server crash / week... Complex errors (e.g. multi-bit) Higher energy (>100 MeV) Larger intensity Component tests Code validation

UNIVERSITET

Nuclear data situation

Application	Tendency	Role of fast n	Funding
ADS	Slow growth	Small but imp	Good
N-therapy	Steady	Does the job	Bad
SEE	Rapid growth	Disturbance	Direct: bad
			Indirect:
			possible

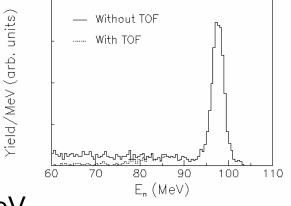
Application	En(MeV)	Targets	Reactions
ADS	0-1000	Many	Many
N-therapy	20-100	C,N,O,Ca	(n,Ll), (n,n)
SEE	10-500	Si	(n,HI), (n,LI)

UNIVERSITET

Present status

Reaction	Status	Error
(n,n)	Done up to 100 MeV	5 %
	Can be done up to 200 MeV	
(n,xn')	Underway at 100 MeV	10 %
	Can be done up to 200 MeV	
(n,LI)	Done up to 100 MeV	5 %
	Up to 200 MeV underway	
(n,f)	Cross sections up to 200 MeV	15 %
	Possible up to 5 GeV	
	Absolute scale problem	
	$d\sigma/d\Omega$, yields, etc. remaining	

Overall limiting factor: normalization 5 %



Comparison mono-E vs. white

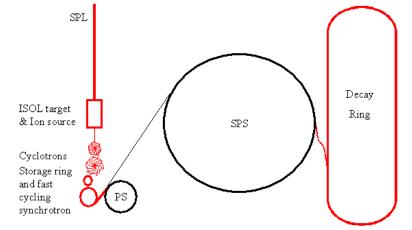
Mono-E:

Large intensity at a given energy $10^6 \text{ n/cm}^2 \text{ s} (\Delta E \approx 1 \text{ MeV})$

TOF for tail rejection

White:Lower intensity / MeV 10^6 n/cm² s (1/En, 1-800 MeV)many MeV simultaneouslyNecessary:Useful rate in reasonable interval \rightarrow Fairly large cross sectionsTOF for energy identification \rightarrow Event-by-event mandatory

White beam possibilities:


Energy evolution mapping Advantage: Requirements: Event-by-event + large cross sections Best case: Fission cross sections Next best: Reaction cross sections (σ_R) Few experiments from ~ 1950 Third: n-d scattering for 3N forces Data at 65, 95 and 250 MeV Map out 50-250 MeV Why not: n-p scattering Done, but data base discrepancies New approaches welcome J. Blomgren, INF Uppsala - CERN

CERN beta-beam facility

 v_e -production by β decay

Spin-off: Intense nbeams (10¹¹ s⁻¹!) (10⁶ today...)

Technique:

Produce β-delayed n emitting nuclei
Accelerate and store in racetrack decay ring
Beams along straight sections due to Lorentz boost
First beams: ~2015

Research options

Limit: Imagination !

Starting point: 10^{11} n/s, $\Delta E = 1-2$ MeVAlmost proton beam intensity, but worse resolutionLarge fraction of "proton nuclear physics" revisited with neutrons

Nuclear data for applications:Energy resolution rarely critical
Accuracy more importantSolution: taggingnp scattering, detect p recoil
 $\rightarrow \Delta E = 100 \text{ keV possible}$
1 % error in cross section possible

Many thanks to:

- EU Council
- Swedish Research Council
- Swedish Cancer Foundation
- Swedish Nuclear Fuel and Waste Management Company
- Swedish Nuclear Power Inspectorate
- Swedish International Development Authority
- Swedish Nuclear Technology Center
- Nuclear Safety and Training AB
- Vattenfall AB
- Barsebäck Power AB
- Ringhals Power AB
- Forsmarks Kraftgrupp AB
- Swedish Defence Research Agency
- The organizers of this meeting!