

Neutronic Requirements for Fusion Relevant Reactor Material Irradiations

Ulrich Fischer

Association FZK-EURATOM Forschungszentrum Karlsruhe Germany

Nuclear Physics & Astrophysics at CERN NuPAC Meeting, 10-12 October 2005

Outline

- Background
- IFMIF Intense Neutron Source
- Neutronics Tools & Data
- Design Analyses
- Conclusions

High Flux Components in Fusion Reactors

- Materials have to withstand high irradiation, heat and mechanical loads during reactor operation.
- Elemental transmutation and activation under irradiation
 - deteriorate the material properties
 - lead to a radiation hazard potential

 \Rightarrow Need for testing and qualifying materials under fusion-specific irradiation conditions

Need for an Intense Neutron Source (INS)

- Dedicated to material test irradiations at fusion-specific conditions (Demo/Power reactor)
 - high neutron flux (\approx 10¹⁵ cm⁻² s⁻¹) and material damage accumulation (\approx 150 dpa in few years)
 - suitable simulation of fusion neutron spectrum
 - sufficiently large irradiation volume
- Available irradiation facilities fulfil needs only partially
 - fission reactors: large irradiation volumes & appropriate neutron flux but neutron spectrum not adequate
 - accelerators (p, a, ..): appropriate dpa & gas production rates, favourable conditions for in-situ test but small volumes
 - (d,t) neutron generators: proper fusion neutron spectrum but source intensity limited to $\approx 10^{13} \, \text{s}^{-1}$ (max. flux $\approx 10^{10} \, \text{cm}^{-2} \, \text{s}^{-1}$)

Need for an Intense Neutron Source (INS)

- Limited testing in ITER
 - fluence accumulation low ($\approx 0.3 \text{ MWa/m}^2 \Rightarrow \approx 3 \text{ dpa in iron}$)
 - operation mode very different from a Demo/power reactor
 - pulsed operation (pulse length \approx 1000 s)
 - low temperature operation
- No irradiation facility available with combined capabilities for
 - simulation of fusion neutron spectrum
 - high fluence irradiation for accelerated material testing
 - sufficiently large irradiation test volumes

IEA Workshop, San Diego, 1989

User Requirements for an INS

- Neutron flux/volume relation
 - Equivalent to 2MW/m² in 10 L volume [1MW/m² \cong 4.4·10¹³ n/cm²s; E = 14 MeV; 3x10⁻⁷ dpa/s for Fe]
- Neutron spectrum
 - Should meet FW neutron spectrum as near as possible
 Quantitative criteria: Primary recoil spectrum, PKA Important transmutation reactions: He, H.
- Neutron fluence accumulation:
 - Demo-relevant fluences of 150 dpa_{NRT} in few years
- Neutron flux gradient: ≤ 10 %/cm
- Machine availability: 70 %
- Time structure: Quasi continuous operation
- Good accessibility of irradiation volume for experimentation and instrumentation $\frac{1 MWa/m^2 \approx 10 dpa_{NRT} \text{ for Fe}}{1 MWa/m^2 \approx 10 dpa_{NRT} \text{ for Fe}}$

U. Fischer, Neutronic Requirements for Fusion Reactor Material Irradiations

- IEA workshops 1989- 1994
 - San Diego 1989: review of INS concepts, evaluation of their suitability and feasibility, definition of key requirements, recommendation for viable INS options
 - Karlsruhe 1992: consensus on accelerator based D-Li source
 - Karlsruhe 1994: project planning
- Implementing agreement of IEA on IFMIF project:
 - Conceptual Design Activity (CDA), 1995 1996
 - Conceptual Design Evaluation (CDE), 1997 1999
 - Key Element Technology Phase (KEP), 2000 2002
 - Transition Phase, 2003-2005 (?)
- Engineering Validation, Engineering Design Activity (EVEDA), 2006 (?)

Association FZK-Euratom

IFMIF Intense Neutron Source

U. Fischer, Neutronic Requirements for Fusion Reactor Material Irradiations

NuPAC Meeting, CERN, 10-12 October 2005

Medium

IFMIF Design Concept

NYY

- Deuteron beams: ٠
 - 2 x 125 mA
 - $E_d = 40 \text{ MeV}$
- Neutron production:

• Test volumes:

– low flux:

 $- \approx 1.1 \times 10^{17} \, \text{s}^{-1}$

^(*)fpy = full power year

IFMIF Neutronics

Key role in establishing IFMIF as neutron source for fusion material testing:

- ⇒ Prove IFMIF's suitability as neutron source for fusion-specific simulation irradiations
- \Rightarrow Provide reliable data for the technical layout of facility
- Computational tools and data required
 - D-Li neutron source term simulation
 - Neutron transport ($E_n > 20 \text{ MeV}$)
 - Activation and transmutation ($E_n > 20 \text{ MeV}$)

⇒ Need for experimental data, need for validation

IFMIF Neutronics Tools & Data

- D(Li,xn) source modelling
 - MCNP \Rightarrow M^cDeLi (semi-empirical reaction models)
 - M^cDeLi \Rightarrow M^cDeLicious (evaluated d + ^{6,7}Li data)
- Neutron transport
 - MCNP/ M^cDeLi/ M^cDeLicious
 - Neutron cross-section data (ENDF6) E≥ 20 MeV
 - INPE Obninsk/FZK co-operation
 - HE data files (LANL, NRG, JENDL-HE)
- Activation & transmutation
 - Intermediate Energy Activation File IEAF-2001
 - ALARA activation code (P. Wilson, Univ. of Wisconsin)

Thick Li-target neutron yields

U. Fischer, Neutronic Requirements for Fusion Reactor Material Irradiations

NuPAC Meeting, CERN, 10-12 October 2005

Li(d,xn) Double Differential Cross Sections

 $E_d = 17 \text{ MeV}$, Bem et al.

Thick Li-target neutron yields using 2005 D-Li data evaluation (P. Pereslavstev et al.)

IFMIF Test Cell Calculations

- IFMIF's primary mission is to generate a materials irradiation database for the design, construction, licensing and operation of DEMO
- Major neutronics task in this context:
 - Provide the data required for the design and optimisation of the irradiation test modules and the lay-out of the test cell
 - ⇒ Neutron/photon transport calculations (McDeLicious) for flux distributions and nuclear responses such as nuclear heating, radiation damage accumulation and gas production.

Materials for IFMIF

- Highest priority: structural materials of the reduced activation ferritic-martensitic (RAFM) type (Eurofer, F82H).
 - \Rightarrow A variety of Eurofer specimens will be irradiated in the high flux test module (HFTM) up to the target fluence of 150 dpa.
- Other materials of (possibly) lower priority:
 - SiC, V/V-alloy, divertor materials (e. g. W)
 - Breeder materials, neutron multiplier
 - Ceramic insulators and others

Chemical Composition of RAFM Steel Eurofer

Element	Specification	Element	Specification
	[w%]		[w%]
С	0.090-0120	W	1.0-1.2
Mn	0.20-0.60	Ti	<0.01
Р	<0.005	Cu	<0.005
S	<0.005	Nb	<0.001
Si	< 0.05	AI	<0.01
Ni	<0.005	N	0.015-0.045
Cr	8.50-9.50	В	<0.001
Мо	<0.005	Со	<0.005
V	0.15-0.25	0	<0.01
Та	0.05-0.09	Fe	balance

Neutron Cross-Sections $E \ge 20 \text{ MeV}$ - General purpose data ENDF evaluations -

- IFMIF project (INPE Obninsk/FZK)
 - ¹H, ⁵⁶Fe, ²³Na, ³⁹K, ²⁸Si, ¹²C, ⁵²Cr, ⁵¹V (50 MeV)
 - ^{6,7}Li, ⁹Be (150 MeV)
- LANL 150 MeV data files (ENDF/B-VI.6)
 - ^{1,2}H, ¹²C, ¹⁶O, ¹⁴N, ²⁷AI, ^{28,29,30}Si, ³¹P, ⁴⁰Ca, ^{50,52,53,54}Cr, ^{54,56,57,58}Fe, ^{58,60,61,62,64}Ni, ^{63,65}Cu, ⁹³Nb, ^{182,183,184,186}W, ^{196,198, 199, 200, 201, 202, 204}Hg, ^{206, 20, 208}Pb, ²⁰⁹Bi
- NRG evaluations
 - ^{40,42-44,46,48}Ca- ⁴⁵Sc, ⁴⁶⁻⁵⁰Ti, ^{54,56-,58}Fe, ^{70,72-74,76}Ge, ^{204,206-208}Pb, ²⁰⁹Bi
- JENDL-HE data file
 - ${}^{1}H, {}^{12,13}C, {}^{14}N, {}^{16}O, {}^{24-26}Mg, {}^{27}AI, {}^{28-30}Si, {}^{39,41}K, {}^{40,42-46,48}Ca, {}^{50}Ti, {}^{51}V, {}^{50,52-54}Cr, {}^{55}Mn, {}^{54,56-58}Fe, {}^{59}Co, {}^{58,60-62,64}Ni, {}^{63,65}Cu, {}^{64,66-68,70}Zn, {}^{90-92,94,96}Zr, {}^{93}Nb, {}^{180,182-184,186}W, {}^{196,198-202,204}Hg$

U. Fischer, Neutronic Requirements for Fusion Reactor Material Irradiations

NuPAC Meeting, CERN, 10-12 October 2005

IFMIF High Flux Test Module (HFTM)

Distributions of nuclear responses in the HFTM

McDeLicious calculations with simplified geometry model

Distributions of nuclear responses in HFTM test rigs

McDeLicious calculations with detailed 3D geometry model

Irradiation Parameters

Irradiation parameter	IFMIF HFTM	ITER	DEMO
Total neutron flux [cm ⁻² s ⁻¹]	10 ¹⁴ - 10 ¹⁵	4x10 ¹⁴	7.1x10 ¹⁴
Neutron flux, $E > 14 \text{ MeV} [\text{cm}^{-2}\text{s}^{-1}]$	$4x10^{13} - 2x10^{14}$	0	0
Hydrogen production [appm/FPY]	1000 – 2500	445	780
Helium production [appm/FPY]	250 – 600	114	198
Displacement production [DPA/FPY]	15 – 60	10	19
H/DPA ratio [appm/DPA]	35 – 50	44.5	41
He/DPA ratio [appm/DPA]	9.5 - 12.5	11.4	10.4
Wall load [MW/m ²]	3 – 8	1.0	2.2

NB. Dpa and gas production data refer to iron.

Damage and gas production

- Displacement damage and elemental transmutations primary responses of the materials under neutron irradiation
- Displacement damage induced by incident neutron through transfer of kinetic energy to colliding nucleus
 - "primary knock-on atom" (PKA) displaced from lattice site
 - PKA can initiate further atom displacements in a sequence of succeeding collisions ("collision cascades")
 - quantification of displacement damage by calculation of number of displacements per atom (dpa)
- Generation of gaseous transmutation products such as hydrogen (H) and helium (He) affects material irradiation behaviour (e. g. embrittlement and swelling)
- ⇒ Production ratios He/dpa and H/dpa primary parameters to characterise the suitability as fusion reactor material irradiation facility

PKA spectra

Activation and Transmutation Analyses

Tools and Data

- Intermediate Energy Activation File IEAF-2001 (FZK/INPE)
 - Complete cross-section data library for activation and transmutation analyses up to $E_n \leq 150$ MeV (1 \leq Z \leq 84)
 - Validated through series of benchmark calculations, tested and qualified for SS-316 & V/V-alloy samples in IFMIF activation experiment
- ALARA activation code (P. Wilson, UW)
 - <u>Analytical and Laplacian Adaptive Radioactivity Analysis</u>
 - Capable of handling an arbitrary number of reaction channels

 \Rightarrow EAF-2005 (E_n \leq 60 MeV) for FISPACT inventory calculations recently became available (UKAEA Culham)

Induced radioactivity in the IFMIF HFTM components

NPI Activation Experiment on W/Eurofer

-

NuPAC Meeting, CERN, 10-12 October 2005

He production cross-section of Fe-nat up to 100 MeV

Neutron Data E> 20 MeV Required for IFMIF Neutronics

Priority	Isotopes	Available Data Evaluations
High		
	⁵⁶ Fe	ENDF/B-VI.6, NRG, FZK/INPE (50), JENDL-HE
	⁵² Cr	ENDF/B-VI.6, FZK/INPE (50), JENDL-HE
	^{182,183, 184, 186} W	ENDF/B-VI.6, JENDL-HE
	⁹ Be	FZK/INPE
	^{6,7} Li	FZK/INPE
	²⁸ Si	ENDF/B-VI.6, FZK/INPE (50), JENDL-HE
	¹² C	ENDF/B-VI.6, FZK/INPE (50), JENDL-HE
	¹⁶ O	ENDF/B-VI.6, FZK/INPE (50), JENDL-HE
	²³ Na	FZK/INPE (50),
	³⁹ K	FZK/INPE (50), JENDL-HE

Neutron Data E> 20 MeV Required for IFMIF Neutronics

Priority	Isotopes	Available Data Evaluations
Medium		
	^{54, 57,58} Fe	ENDF/B-VI.6, NRG, JENDL-HE
	^{50, 53,54} Cr	ENDF/B-VI.6, JENDL-HE
	^{29,30} Si	ENDF/B-VI.6, JENDL-HE
	^{63, 65} Cu	ENDF/B-VI.6, JENDL-HE
	¹ H	ENDF/B-VI.6, JENDL-HE
	¹⁸¹ Ta	-
	+ many more	
Low		
	^{46, 47,48,49} Ti	JENDL-HE
	+ many more	•

Conclusions

INS for testing and qualifying fusion materials must be suited to simulate fusion relevant irradiation characteristics:

- Neutron flux level & fluences
- Radiation damage & activation characteristics
 - He/dpa ratio
 - PKA spectrum, damage production function W(T)
 - Transmutation products
- Sufficient irradiation test volume
- IFMIF shown to be suitable INS

Conclusions

- Suitable computational tools, data and models available for IFMIF neutronics and activation analyses
 - McDeLicious Monte Carlo code for Li(d,xn) neutron source
 - Various general purpose intermediate/high energy data evaluations
 - Activation and transmutation data libraries (up to 150 MeV)
- General purpose (ENDF) data evaluations E> 20 MeV
 - Need for full IFMIF data library (validated data evaluations)
 - \Rightarrow Cross-section measurements, benchmark experiments
- Activation/transmutation/gas production data
 - Need for validation (\Rightarrow Benchmark experiments)
 - Need for cross-section measurements

