Old Metal-Poor Stars: Observations and Implications for Galactic Chemical Evolution

Timothy C. Beers
Department of Physics \& Astronomy and
JINA: Joint Institute for Nuclear Astrophysics
Michigan State University

Why the Fascination with Metal-Poor Stars ?

- Extremely metal-poor (MP) stars have recorded the heavy element abundances produced in the first generations of stars in the Universe
- The shape of the low-metallicity tail of the Metallicity Distribution Function will (eventually) show structure that reveals the characteristic abundances of major epochs of star formation in early Galaxy
- Identification of relatively rare objects amongst MP stars, e.g., r-process / s-process enhanced stars that can be studied at higher resolution to understand detailed predictions of nucleosynthesis models

The Importance of Neutron-Capture Enhanced Metal-Poor Stars

- Early generation (low metallicity) stars have recorded the direct astrophysical elemental patterns of, e.g., the s-process and the rprocess
- Predictions and tests of nuclear physics (mass models, measurements of fundamental properties of nuclei, operation of n-capture processes) can be compared with observations of these rare stars that exhibit the variety of neutron-capture patterns produced in nature
- Determination of absolute frequency of various abundance patterns is required to construct astrophysically consistent models for formation of the elements
- Require large samples of, in particular, r-process-enhanced, metal-poor stars in order to place constraints on the nature of the r-process, its site(s), examination of possible variation in abundance patterns from star to star, and of course...
- Cosmo-chronometry (with Th and U)

The Importance of r-process Enhanced Metal-Poor Stars

- CS 22892-052: $[\mathrm{Fe} / \mathrm{H}]=-3.1$;

$$
[\mathrm{r} / \mathrm{Fe}]=+1.7
$$

- All r-I and r-ll stars have patterns for $56<Z<76$ that match the solar r-process component extremely well (Sneden et al. 2003)
- Most have measurable lines of Th, and other stable r-process elements, upon which cosmochronometric age limits can be placed
- Some have measurable lines of U , providing tighter constraints on age estimates

Z, The Proton Number ${ }^{4} \rightarrow$

Examples of Recent Progress

- Discovery of Hyper Metal-Poor star HE 1317-2326 - $[\mathrm{Fe} / \mathrm{H}]=-5.6$ (Frebel et al. 2005)
- New Measurements of U and Pb in CS 31082-001
- (Cayrel et al. 2005)
- Hamburg/ESO R-Process-Enhanced Star Survey (HERES) observations of [Fe/H] < -2.0 giants
- Barklem et al. (2005)
- "Snapshot" spectroscopy (R $\sim 20,000, S / N \sim 30 / 1$) of ~ 400 VMP giants with VLT/UVES
- Discovery of 8 new r-II stars ; 35 new r-I stars; numerous s-process-enhanced stars, numerous carbon-enhanced stars
- Discovery of new "U Star": CS 29497-004 (Hill et al. 2005)

HE 1327-2326: The New Record Holder

A New Measurement of the U line in CS 31082-001

31082-001: So LITTLE Lead!

- 13 exposures of 90 min each needed to obtain more than an upper limit for lead.
- Abundance (LTE) found: $\log (\mathrm{Pb} / \mathrm{H})=-12.55 \pm 0.15$ (or -0.55 ± 0.15 on the scale $\log (\mathrm{nH})=12$).

Contrary to Expectation...

- This is what is expected ONLY from the decay of the three actinides ${ }^{238} \mathrm{U},{ }^{235} \mathrm{U}$ and ${ }^{232} \mathrm{Th}$, without other contribution!
- Current attempts to reproduce the neutron capture elements in the solar system produce much more lead by direct channels
- But.....NLTE , and r-element estimates in solar-system may also present problems

Another Look at Pb in CS 31082-001

HERES Eu Survey Spectra and Results to Date

- HERES is based on "snapshot" highresolution spectroscopy
- Neutron-capture-enhanced stars indicated by presence of Eu 4129
- 8 new r-II stars with $[r / F e] \geq+1.0$
- 35 new r-I stars with [r/Fe] $\sim+0.3$

The apparent frequency of r-II stars is $\sim 5 \%$ of giants with $[\mathrm{Fe} / \mathrm{H}]<-2.5$

HERES Survey: Other Elements

CS 31082-001: $[\mathrm{Fe} / \mathrm{H}]=-2.9$

HERES Blue Spectrum

The Power Of Large N: 274 Stars from HERES

A New R-Process Enhanced Star with Uranium Detected: CS 29497-004!

Distribution of $[\mathrm{Fe} / \mathrm{H}]$ for r-process Enhanced Stars from HERES

The Sloan Digital Sky Survey

- The most ambitious astronomy project ever undertaken
- Obtain accurately calibrated imaging of 10,000 square degrees of (northern) sky, in five filters (ugriz)
- Obtain medium-resolution spectroscopy for
- 1,000,000 galaxies
- 100,000 quasars
- Has been fully operational since ~ Jan 1999
- Completed its primary imaging mission in July 2005

SDSS -- The Telescope and Data

ARC 2.5 m SDSS Telescope (3 deg FOV)

SEGUE: The Sloan Extension for

Galactic Understanding and Exploration

- Fully funded (\$15 Million: Sloan Foundation / NSF / Partners (JINA) for operation through July 2008
- Use existing SDSS hardware and software to obtain:
- 3500 square degrees of additional ugriz imaging at lower latitudes
- Medium-resolution spectroscopy of 250,000 "optimally selected" stars in the thick disk and halo of the Galaxy
- 200 "spectroscopic plate" pairs of 45 / 135 min exposures
- Objects selected to populate distances from 1 to 100 kpc

SEGUE uses stellar probes of increasing absolute brightness to probe increasing distances in the disk, thick disk and Milky Way halo.

The SDSS Spectrograph Plug Plate

Identification of targets on the sky
A prepped and drilled plate ${ }^{20}$

A Cartoon Version

SDSS Spectra

SEGUE observing plan and status as of J uly 2005

SDSS Imaging scan
Declination $=-20$ degrees
䀚 Planned SEGUE scan (3500 sq deg) $\boldsymbol{\rho}$
Sgr stream planned scan
䀚 Completed SEGUE imaging
Completed SEGUE plate pointing

SEGUE Target Selection- "JINA-fied"

CMD for 18 m 9 ot $(\mathrm{RA}, \mathrm{DEC})=(18.70,-9.721)$

Example Main-Sequence Turnoff Stars of Low Metallicity

Likely Numbers of Detected MP Stars from SEGUE

- Actual numbers will depend on the shape of the halo Metallicity Distribution Function

-	$[\mathrm{Fe} / \mathrm{H}]<-2.0$	$\sim 20,000$
(VMP)		
-	$[\mathrm{Fe} / \mathrm{H}]<-3.0$	$\sim 2,000$
(EMP)		
-	$[\mathrm{Fe} / \mathrm{H}]<-4.0$	$\sim 200 ?$
-	$[\mathrm{Fe} / \mathrm{H}]<-5.0$	$\sim 20 ?$
-	$[\mathrm{Fe} / \mathrm{H}]<-6.0$	$\sim 2 ?$
	(HMP)	

The Plan of Attack

- SEGUE identification of bright MP giants with $[\mathrm{Fe} / \mathrm{H}]<-2.0$
- Brightest 2000-3000 taken to HET, etc., for "snapshot" high-resolution spectroscopy
- Most interesting (e.g., r-process / s-process-enhanced) stars thus identified taken to, e.g., Subaru/Keck/LBT, etc. for higher S / N determinations of elemental abundance patterns
- Construction of astrophysically-consistent scenarios to account for patterns and frequency of n -capture (and other) abundance patterns
- Note: Within 5-7 years, expect to be able to accomplish high-resolution surveys directly, targeting millions of individual stars

Suggested Questions...

- "I hear you have some cool SDSS imaging you would like to share - can I see some of that ?"
- "Tell me more about the million-star samples, in particular:
- LAMOST (China)
- Keck-ET (SDSS)
- WFMOS (Gemini/Subaru)"

The SDSS Scrolling Sky

http://skyserver.sdss.org/dr1/en/tools/scroll//

