

Nucleosynthesis issues and massive stars

Karlheinz Langanke

GSI & TU Darmstadt

CERN, October 10, 2005

Karlheinz Langanke (GSI & TU Darmstadt) Nucleosynthesis issues and massive stars

1/20

- supernova: general picture
- the quest for nuclear input
- explosive nucleosynthesis
- r-process: nuclear needs and possibilities

• . . .

Core-collapse supernova.

-2

Presupernova evolution.

- T = 0.1-1.0 MeV, $\rho = 10^7-10^{10}$ g cm⁻³.
- Composition of iron group nuclei (A=45-65)
- The dynamical time scale set by electron captures:

 $e^- + (N,Z)
ightarrow (N+1,Z-1) +
u_e$

• Evolution decreases number of electrons (Y_e) and Chandrasekhar mass ($M_{Ch} \approx 1.4(2Y_e)^2 M_{\odot}$)

• Capture rates on individual nuclei computed by:

- Shell Model (A < 65)
- Shell Model Monte Carlo (A > 65)

4 E N

Gamow-Teller strength distributions.

shell model results agree after overall quenching by $(0.77)^2$

Collapse phase.

Important processes:

- $T > 1.0 \text{ MeV}, \ \rho > 10^{10} \text{ g cm}^{-3}.$
- electron capture on protons $e^- + p \rightarrow n + \nu_e$
- Neutrino transport (exact solution Boltzmann equation):
 - $\nu + \mathbf{A} \rightleftharpoons \nu + \mathbf{A}$ (trapping)

$$\nu + e^{-}
ightarrow \nu + e^{-}$$
 (thermalization)

A (10) < A (10) < A (10) </p>

6/20

cross sections $\sim E_{
u}^2$

What is the role of electron capture on nuclei?

 $e^- + (N,Z)
ightarrow (N+1,Z-1) +
u_e$

Pauli blocking of Gamow-Teller transition

Unblocking mechanism: correlations and finite temperature

4 A N

→ ∃ →

7/20

calculation of rate in SMMC + RPA model

Electron capture: nuclei vs protons

CERN, October 10, 2005 8/20

Consequences

- E - N

Capture rates and single-particle energies

Explosive nucleosynthesis in supernova

- Consistent treatment of supernova dynamics coupled with a nuclear network.
- Essential neutrino reactions in the shock heated region

$$u_e + n \rightleftharpoons p + e^-$$
 $\bar{\nu}_e + p \rightleftharpoons n + e^+$

- B

Y_e evolution of a mass element

Karlheinz Langanke (GSI & TU Darmstadt) Nucleosynthesis issues and massive stars CERN, October 10, 2005 11 / 20

Comparison with observations.

Carla Fröhlich et al., astro-ph/0410208

Karlheinz Langanke (GSI & TU Darmstadt) Nucleosynthesis issues and massive stars CERN, Oct

12/20

Effect of neutrinos on nucleosynthesis.

G. Martínez-Pinedo, C. Fröhlich, F.-K. Thielemann

- Without neutrinos flow stops at 64 Ge ($t_{1/2} = 64$ s)
- With neutrinos:

$$\bar{\nu}_e + p \rightarrow e^+ + n; \quad n + {}^{64}\text{Ge} \rightarrow {}^{64}\text{Ga} + p; \quad {}^{64}\text{Ga} + p \rightarrow {}^{65}\text{Ge}; \dots$$

・ロト ・ 四ト ・ ヨト ・ ヨト

Masses for r-process nuclei

Half-lives for r-process nuclei

Neutrino induced fission for r-process

- Competition between neutron decay and fission.
- Fission relatively enhanced with increasing neutrino energy.

R-process fission fragment distributions.

A. Kelić, K.-H. Schmidt, N. Zinner

R-process: neutron emission.

Number of emitted neutrons

- Also relevant for beta-induced fission
- Postprocessing of abundance distribution after neutron freeze-out

r-process needs

Karlheinz Langanke (GSI & TU Darmstadt) Nucleosynthesis issues and massive stars CERN, October 10, 2005 20 / 20

Improved nuclear ingredients are required for supernova simulations

- Electron capture rates on nuclei
- Neutrino-nucleus cross sections
- Equation of state; matter composition

Improved nuclear ingredients are required for r-process

- $\bullet \ Masses \to r\text{-}process \ path$
- Half-lives, β -delayed n-emission \rightarrow abundances
- Neutron capture rates \rightarrow after freeze-out, abundances
- Fission rates and mass fragment distributions
- Neutrino-induced rates?

Answer from radioactive ion-beam facilities

GT strength in multi-shell calculations

- No-core shell model calculation of ¹²C
- Gamow-Teller strength shifted to higher excitation energies

M1 and GT strengths in 12C

E. Caurier, G. Martinez-Pinedo, F. Nowacki

Composition dependence of the electron capture

- NSE (Strong and electromagnetic reactions in equilibrium)
- Multifragmentation model: developed from heavy-ion collisions (A. Botvina, I. Mishustin & W. Trautmann).

Neutrino nucleosynthesis

Neutrinos interact with abundant nuclear species

 Neutral current (ν, ν'): nucleus excited to particle unbound states which decay by particle emission

24/20

Product	Parent	Reaction
⁷ Li	⁴He	$(\nu, \nu' n)^3$ He $(\alpha, \gamma)^7$ Be (n, p)
		$(u, u' p)^3 H(lpha, \gamma)$
¹¹ B	¹² C	$(\nu, \nu' n), (\nu, \nu' p)$
¹⁵ N	¹⁶ O	$(\nu, \nu' n), (\nu, \nu' p)$
¹⁹ F	²⁰ Ne	$(\nu, \nu' n), (\nu, \nu' p)$
¹³⁸ La	¹³⁸ Ba	(ν, e^{-})
	¹³⁹ La	$(\nu, \nu' n)$
¹⁸⁰ Ta	¹⁸⁰ Hf	(ν, e^{-})
	¹⁸¹ Ta	<u>(レ, レ' n) ペロト イ団ト イヨト イヨト</u>

Karlheinz Langanke (GSI & TU Darmstadt) Nucleosynthesis issues and massive stars CERN, October 10, 2005

A. Heger et al, Phys. Lett. B606 (2005) 258

Production of ¹³⁸La

Produced by ¹³⁹La(
$$\gamma$$
, n),¹³⁸Ba(ν_e, e^-)

-2

26/20

Karlheinz Langanke (GSI & TU Darmstadt) Nucleosynthesis issues and massive stars CERN, October 10, 2005