Neutron cross sections for reading the abundance history

Michael Heil Forschungszentrum Karlsruhe

Outline

- One of the main goals of Nuclear Astrophysics is to explain **how** and **where** the chemical elements were produced. Nucleosynthesis is strongly related to
- evolution of stars
- chemical evolution of Galaxy
- age of the Universe, ...

Outline

- The s-process a diagnostic tool for stars
- Recent observations of metal-poor halo stars and consequences for the nucleosynthesis
- (n,γ) measurements for the weak s-process (activation method)
- Cross section measurements at n_TOF
- Conclusions

-process path follows valley of stability, therefore the main nuclear properties

- neutron capture cross sections
- β -decay rates

hich are needed as input for stellar models are accessible by lab. measurement

main component of s-process

- Production of isotopes 90<A<210
- Astrophysical site:
- He-rich intershell of evolved red giants AGB-stars 1-6 $\rm M_{\odot}$

- Neutron sources: ${}^{13}C(\alpha,n)$, ${}^{22}Ne(\alpha,n)$ Temp.: ~1-10⁸ K and ~3-10⁸ Neutron density: 4-10⁸ cm⁻³ Mass density: 6.5-10³ g cm⁻³
- In future:
 - Convection times Rotation Magnetic fields

weak component of s-process

Responsible for production of isotopes A<90 Astrophysical site: Massive stars >10 M_{\odot}

Core He-burning Temp.: ~2-3-10⁸ K (kT=25 keV) Neutron density: ~1-10⁶ cm⁻³ Neutron source: $^{22}Ne(\alpha,n)$ Shell C-burning Temp.: ~1.10⁹ K (kT=90 keV) Neutron density: ~1.10¹¹ cm⁻³ Neutron source: mainly ²²Ne(α ,n) but also ¹³C(α ,n) and ¹⁷O(α ,n) contribute

The weak s-process of massive stars is also related to explosive scenarios since it determines the composition of the progenitor.

The main s-process in AGB stars

Stellar model calculations of AGB stars in comparison with the solar abundances

r-residuals method

$$N_r = N_{solar} - N_s$$

Arlandini et al. ApJ 525 (1999) 886

Observation of metal-poor halo stars

Metal-poor halo stars should show pure r-abundances

Comparison of observed abundances and scaled N_r ($\log \varepsilon(A) = \log \left| \frac{1N_A}{N_H} \right| + 1$

neden et al., Ap. J. 591 (2003) 936

Sum rule: s + p + r = 100 %

'eak s: aiteri et al.

oJ 419 (1993) 207

<mark>ain s:</mark> Iandini et al. oJ 525 (1999) 886

alactic chemical evolution: avaglio et al. oJ 601 (2004) 864

abundances from halo stars: neden et al., p. J. 591 (2003) 936

process: o: 24 % u: 7 %

Sum rule for s-only

Challenges for the weak s-process

s-process abundances are determined mainly by Maxwellian averaged neutron capture cross sections for thermal energies of kT=25 – 90 keV.

Challenges:

- small cross sections
- resonance dominated
- contributions from direct capture

Weak s-process – example ⁶²Ni(n,γ)

Previous measurements vary between 12.5 mb and 36 mb at kT=30 keV

Recommended cross section: (Bao et al.) at kT=30 keV: 12.5 ± 4 mb

New measurement 2005: (FZK / Weizman Institute): 26.1 ± 2.5 mb

1.8 Nassar et. al. Phys. Rev. Lett. 94 (2005) 092504 Relative nucleosynthesis yields in ejecta 1.6 As Se Sr 1.4 1.2 Cu Zr Fe Co 0.8 0.6 M=25M_{sun} 0.4 55 65 70 90 95 10 60 75 80 85 Mass Number JENDL-3.3 parameters

Story is not over: N. Tomyo et. al. 2005: 37.0 ± 3.2 mb

Activation technique at kT=25 keV

- Neutron production via ⁷Li(p,n) reaction at a proton energy of 1991 keV.
- Induced activity can be measured after irradiation with HPGe detectors.
- Result: MACS at kT=25 keV

- High sensitivity -> small sample masses or small cross sections
- Use of natural samples possible, no enriched sample necessary
- Direct capture component included

Results

Isotope	MACS @ kT=30 keV	Bao et al. @ kT=30keV
	in mbarn	in mbarn
⁴⁵ Sc	57 ± 2	69 ± 5
⁵⁹ Co	41 ± 2	38 ± 4
⁶³ Cu	53 ± 2	94 ± 10
⁶⁵ Cu	29 ± 2	41 ± 5
⁷⁹ Br	626 ± 19	627 ± 42
⁸¹ Br	241 ± 9	313 ± 16
⁸⁷ Rb	16.1 ± 2.0	15.5 ± 1.5

Many cross sections are a factor 2 lower than previously reported and far outside the quoted uncertainties

Results – weak s-process abundances

Effect of neutron poisons

• Neutron poisons effect the neutron balance e.g. ${}^{16}O(n,\gamma)$, ${}^{12}C(n,\gamma)$, ${}^{23}Na(n,\gamma)$, Mg(n, γ) ...

Limitations of the activation method

- Activation measurements are restricted to unstable product nuclei.
- Stellar neutron spectra can only be produced for thermal energies of kT=25 keV using ⁷Li(p,n)
 kT= 5 keV using ¹⁸O(p,n)
- $kT = 52 \text{ keV} \text{ using } {}^{3}\text{H}(p,n)$
- The weak s-process takes place during core He-burning at kT=25 keV but also during C-shell burning at kT=90 keV.
- Extrapolation of MACS measured at kT=25 keV to kT=90 keV cause systematic uncertainties.
- -> We need TOF measurements between 1 keV and 500 keV.

(n,γ)-measurements at n_TOF

- Cross sections are small (~µbarn)
 -> high neutron flux, low background
- Cross sections are resonance dominated
 -> good energy resolution

n_TOF is an ideal facility to measure neutron capture cross sections of nuclei with small cross sections.

Measurement of Mg isotopes at n_TOF

(n, γ)-measurements at n_TOF

Measurement of Zr isotopes at n_TOF

L. Marques, et al. - The n_TOF Collaboration

The extracted resonance parameters compared with a previous measuremer

Previous experiments often underestimated the background contribution from scattered neutrons.

Improvements at n_TOF

A second flight path (20 m) will increase neutron flux by a factor 100 and double the beam time.

Future measurements

ୖୖ

- Isotopes relevant for the weak s-processing. Ni isotopes
- Neutron poisons, e.g. ${}^{16}O(n,\gamma)$
- Light isotopes of relevance for stellar grains, e.g. Ca isotopes

- Radioactive isotopes for the weak s-process, e.g. ⁶³Ni, ¹⁰⁷Pd
- Branch points, e.g. ¹⁴⁷Pm, ¹⁷⁹Ta

Conclusions

- Neutron capture cross sections are indispensable for the understanding of nucleosynthesis
- Many neutron capture cross sections are needed with higher accuracy or in a wider energy range.
- n_TOF at CERN is an ideal place to measure small neutron capture cross sections as well as cross sections of radioactive targets where only small sample masses are tolerable.

Future measurements

- ⁶⁴Ni(n,γ)
- ⁵⁸Fe(n,γ)
- Zn
- Ga
- Ge (no data)
- Se (no data)

• ¹⁰⁷Pd(n,γ)

Nucleosynthesis of the heavy elements

Results – weak s-process abundances

