Mass Measurements and Nuclear Structure

G. Bollen National Superconducting Cyclotron Laboratory NSCL Michigan State University

Rare Isotope Physics - an expedition by far not completed!

Binding energies determine limits of existence

How do mass measurements contribute?

Constraints for nuclear models

G. Bollen, INTC-NUPAC Meeting, CERN, Geneva, October 2005

NSC

Nuclear Structure and Masses

Systematic study of masses – first indicator of new nuclear structure effects

Tools for mass measurements on rare isotopes

+ Q-values from reactions and decays

Comparison of Methods

Mass measurements far from stability at CERN

- CERN pioneered direct mass measurements far from stability
 - Na isotopes (SPS) \rightarrow discovery of island of inversion
 - ¹¹Li (SPS) \rightarrow first loosely bound exotic nucleus discovered
 - Rb isotopes (ISOLDE) → first subshell closure observed in long isotopic chains
- **ISOLDE** pioneered new techniques for short-lived isotopes
 - Penning trap mass spectrometry + many related techniques (ISOLTRAP)
 - RF mass spectrometry (MISTRAL)

MISTRAL: Mass measurements at **ISOLDE** with a **Transmission RA**diofrequency spectrometer on-Line

Mass measurements of halo nuclei - ¹¹Li

¹¹Be, ¹²Be, towards ¹⁴Be

MISTRAL 30- 9-2005 15h 5

How magic are magic numbers?

MISTRAL: n-rich Na and Mg isotopes with high precision

ISOLTRAP – triple trap spectrometer

Mass measurement via determination of cyclotron frequency

 $\omega_{c} = (q/m) \cdot B$

ISOLTRAP harvest

G. Bollen, INTC-NUPAC Meeting, CERN, Geneva, October 2005

G. Bollen, INTC-NUPAC Meeting, CERN, Geneva, October 2005

Towards exotic doubly magic nuclei - ⁷⁸Ni ISOLTRAP

Evolution of nuclear binding towards doubly-magic ⁷⁸Ni is not known

+ n-rich tin isotopes up to ¹³⁵Sn

Identification of triple isomerism in ⁷⁰Cu **ISOLTRAP RILIS** \mathbb{T} (2)(1)390 3) 700 Intensity ratio Mean TOF / µs 330, 30, 600 + 1+ 16% Intensity (arb. units) 500 ***** 6-80% -3-4% 400 300 (6^{-}) state = gs 200 \Rightarrow 270 100 (2)390 -100 30534.6 30534.8 30535.0 30535.2 30535.4 30535.6 30535.8 30536.0 Mean TOF / µs 33(30 Frequency of first transition (cm⁻¹) ıЖ 101(3) keV T_{1/2} / s E / keV Ĵâ $\omega_c = q/m \cdot B$ 242.4(3) 6.6(2)(1+) (3^{-}) state = 1.is 270 \Rightarrow β-≈95% IT≈5% (3) Unambiguous 390 · state (3-)101.1(3) 33(2) sn 360 assignment! β-≈50% 242(3) keV IT≈50% Mean TOF 330 with cleaning of 6⁻ state 300 44.5(2) **1**6-) 0 1⁺ state = 2.is \Rightarrow β-=100% 270. J. Van Roosbroeck et al., PRL 92, 112501 (2004) 10 12 0 2 6 8 4 v_- 1300610 / Hz

Mass measurement programs outside ISOLDE

TRAPS	LEBIT	NSCL at MSU	Fragmentation, In-flight fission	Short-lived, non-ISOL elements
	SHIPTRAP	GSI	Fusion-Evaporation	Superheavies p-rich
	СРТ	ANL	Fusion-Evaporation Fission	p-rich and n-rich (selected regions)
	JYFLTRAP	JYFL	IGISOL, Spallation, Fission	Non-ISOL elements
Storage Ring	ESR	GSI	Fragmentation In-flight fission	Schottky (large surveys T _{1/2} >10s) TOF: short-lived
Spectrometer TOF	SPEG	GANIL	Fragmentation	Short-lived, very exotic
Cyclotron TOF	CSS2	GANIL	Fragmentation	Short-lived

+ reactions (unbound states, beyond the dripline) and decays

New projects: TITAN at ISAC (highly-charged ions), MAFFTRAP (n-rich)

SHIPTRAP – Towards SHE

G. Bollen, INTC-NUPAC Meeting, CERN, Geneva, October 2005

Low Energy Beam and Ion Trap Facility at NSCL/MSU

Precision Mass Measurement of Fast Beam Fragments

Secondary Beam ³⁸Ca (92 MeV/u)

Statistical uncertainty $\delta m \approx 80 \text{ eV}$ Expected final uncertainty $\delta m < 300 \text{ eV}$

- First successful nuclear physics experiment with a thermalized beam from fast beam fragmentation.
- ³⁸Ca is a 0⁺ → 0⁺ beta emitter: new candidate for CVC tests.

... and more to come

G. Bollen, INTC-NUPAC Meeting, CERN, Geneva, October 2005

Conclusions

Mass measurements are key to a better understanding of nuclear structure and important to other fields of research with radioactive isotopes

ISOLDE has a very strong mass measurement program

- Experiments related to key topics: halos, evolution of shell structure, nuclear astrophysics, fundamental interaction tests
- Two excellent experimental devices with significant development potential

Complementary programs exist worldwide- different techniques (PTMS, TOF, ESR) - different production methods

... still a lot to be done!

G. Bollen, INTC-NUPAC Meeting, CERN, Geneva, October 2005

Masses close to Z=82

Region of shape-coexistence with interesting nuclear structure effects

Discussion within IBM & microscopic-macrosopic model R. Fossion et al., NPA 697 (2002) 703

G. Bollen, INTC-NUPAC Meeting, CERN, Geneva, October 2005