Structure, Shapes from Excited States

Piet Van Duppen IKS - K.U. Leuven, Belgium for the MINIBALL Collaboration

> Physics Motivation and Questions (see D. Vretenar)

> ISOLDE has unique possibilities to produce high-quality results that form stringent test for our understanding of the atomic nucleus

<u>Outline</u>

- > Introduction (probing excited states, radioactive beam experiments)
- > The REX-ISOLDE MINIBALL Physics Program: a few Selected Cases
- Future Outlook and Conclusion

> Needs

"Safe" Coulomb Excitation experiments > particle (CD) - γ correlations

✓ "Island of Inversion" at N=20

✓ Towards the doubly magic ⁷⁸Ni (Coulex of Zn)
✓ N=40: Coulomb excitation ^{68,70mg}Cu
✓ Transfer reactions

O. Niedermaier, H. Scheit, MPI-Heidelberg

³⁰Mg: O. Niedermaier, H. Scheit et al., PRL 94, 172501 (2005) ^{32,34}Mg: J.A. Church et al., new measurement @ MSU, PRC in print ³⁰Mg: $T_{1/2}$ H. Mach et al., ISOLDE

"Island of Inversion" at N=20

\checkmark Towards the doubly magic ⁷⁸Ni (Coulomb excitation of Zn)

- N=40: Coulomb excitation 68,70mgCu
- ✓ Transfer reactions

K.U. Leuven

evolution of collectivity Z>28 (Zn, Ge)

"Island of Inversion" at N=20
Towards the doubly magic ⁷⁸Ni (Coulex of Zn)
N=40: Coulomb excitation of ^{68,70mg}Cu
Transfer reactions

Coulomb excitation: ^{68m,g}Cu (2.86 MeV/u) @ ¹²⁰Sn (2.3 mg/cm²)

> July 2005: post-accelerated isomeric beams!

✓ "Island of Inversion" at N=20
✓ Towards the doubly magic ⁷⁸Ni (Coulex of Zn)
✓ N=40: Coulomb excitation ^{68,70mg}Cu
✓ Transfer reactions

✓ Transfer reactions

✓ First experiment: ²H(³⁰Mg,p)³¹Mg E/A=2.25 MeV/u (cfr. Th. Nilsson)
✓ SPIRAL - GANIL: ^{44,46}Ar @ 10 MeV/u (O. Sorlin et al.)
✓ ²H(⁸²Ge,p)⁸³Ge (⁸²Ge @ 10⁴ pps) E/A=4.0 MeV/u (ORNL) cfr. J. D'Auria (J.S. Thomas et al., PRC71 (2005) 021302)

particle - γ correlations - recoils
(REX-ISOLDE - MINIBALL) + spectrometer
K.U. Leuven higher energy needed! (cfr. P. Butler) NI

✓ Future outlook and Conclusion "Study of the evolution of shapes and shells"

 \checkmark Radioactive decay studies remain a very important tool to study nuclear structure far of stability

✓ Coulomb excitation at "safe" energies ⇒ towards heavier masses ⇒ energy, B(E2) $\alpha + \alpha$

 ✓ Single-nucleon transfer reactions e.g. (d,p) and (⁹Be,⁸Be) particle (Si array) - γ (MINIBALL) coin. - recoils (spectrometer) ⇒ energy, spin/parity, spectroscopic factor (absolute/relative)
■ e.g. ²H(⁸⁰Zn,p)⁸¹Zn: single particle states in ⁸¹Zn

Transfer induced spin orientation ⇒ nuclear moments

✓ Coulomb excitation of n-deficient Hg, Pb and Po isotopes (complementary to $T_{1/2}$ meas. performed at JYFL and ANL)

✓ Single-neutron transfer of Hg, Pb and Po isotopes: odd-mass nuclei

✓ Two-proton transfer reactions (underlying $\pi(2p-2h)$ structure)

Potential Energy Surface for ¹⁸⁶Pt $\checkmark \beta$ -decay studies (Calorimetric measurements)

A. Andreyev et al., Nature 405 (2000) 430

ISOLDE has a unique potential and combines unique capabilities: beams (pure, isomeric), techniques and instrumentation

- ✓ energy upgrade (Coulex and transfer): $3.1 \rightarrow 4.2 \rightarrow > 5$ MeV/u ✓ post-acceleration of heavier masses
- \checkmark continuous development for higher intensity, better purity and new radioactive ion beams
- ✓ longer beam time
- ✓ new instrumentation:
 - Bragg detector (Ch. Barton; University of York)
 - New set-up for transfer reactions
 - Recoil spectrometer (identification of the reaction products)

Max Planck Institut fur Kernphysik Heidelberg Germany Institut fur Kernphysik Universitat Koln Germany TU Darmstadt Germany TU Munchen Germany LMU Munchen Germany Johannes Gutenberg Universitat, Mainz, Germany GSI-Darmstadt, Germany University of Gottingen, Germany University of Frankfurt, Germany IKS KULeuven Belgium Chalmers Teknaska Hogskola, Goteborg, Sweden CERN Switzerland University of Liverpool, U.K. ILL, Grenoble, France IRES, Strasbourg, France **IPN Orsay France** GANIL Caen France University of Edinburgh, U.K. Neils Bohr Institute Roskilde Denmark University of Camerino, Italy NCSR Athens, Greece University of Warsaw, Poland University of York, U.K.

