

Safety Issues for HIE-ISOLDE and nTOF-Ph2

Thomas OTTO, Radiation Protection Group, SC-RP, CERN

PSB ISOLDE: Parameters

Hot Cell Protection features have been designed for **Proton Beam** E = 1 GeV, $I = 1.6 \mu \text{A}$, Robot Control Robots GPS Target $P = 1.6 \, \text{kW}.$ HRS Target GPS Sep<u>arato</u> (A.H. Sullivan, 1990) HRS Separator Conservative design: Control Room facility operated at LA1 ASPIC $E = 1.4 \text{ GeV}, I = 2.1 \mu\text{A}$ REX-ISOLDE COLLAPS COMPLIS (P = 3 kW).HV Platform SOLTRAP

NICOLE

MISTRAL

HIE ISOLDE: Parameters

- Increase of the average proton beam current:
 - higher input current from LINAC-4
 - shorter cycle of PS Booster
 - more pulses from PS Booster
- An overall gain of up to 5 is hoped for: E=1.4 GeV, $I = 10 \mu \text{A}$, P = 14 kW
- More exotic options (e.g. fission target driven by Linac-4) are not yet considered

PSB ISOLDE: Releases

- Activation of air in target area
- Extraction by ventilation
- Release into environment
- Exposure of public

- Present Situation:
 - Dose to "critical population group" from releases of Meyrin Site: 3.8 μSv/year (50% from ISOLDE). The Swiss Guideline value is 10 μSv/year and no NPP exceeds 5 μSv/year.
 - Triggering of radioactivity gates monitors at exits of CERN from activated air, when beam intenity increased (wind dependent)

HIE ISOLDE: Releases

Air activation ~ number of protons on the target:

1.9 μSv/year * 5 = 9.6 μSv/year

 More releases from PS and transfer to SPS due to (intense) CNGS beam:

5 – 7 μSv/year

- Contribution from n-TOF sizeable, but presently unknown
- Guideline value exceeded, must apply optimisation
 - Option 1: recirculation of air in target area
 - Option 2: significantly higher ventilation stack

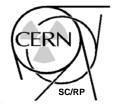
PSB ISOLDE: Maintenance

- Maintenace is "Hands-on"
- In the Faraday cages: $\dot{H}^*(10) \approx 5 \text{ mSv/h}$
- Collective dose :
 H_{coll} = 15–25 man-mSv/year
- Highest exposed individuals: between 4 and 6 mSv/year

HIE ISOLDE: Maintenance

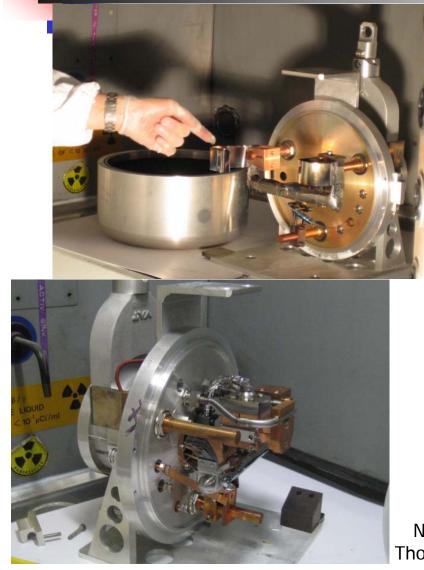
Simple scaling: Dose rate from activation ~ Number of protons present "Hands-on" practice cannot continue. Option 1: improve reliability of target/front-end Option 2: rapid exchange of functional units (no intervention on recently irradiated components) **Requires sufficient spare front-ends** (repair might be deferred to years later, when dose rate acceptable for repair)

PSB ISOLDE: Contamination



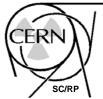
- Internal structures of front end, separator, beam lines and vacuum system are heavily contaminated.
- Radiotoxic a-emitters from actinide targets
- Bat. 179 now classified as a worksector (type A):
- New, personnel-intensive, procedures

HIE ISOLDE: Contamination



- Remove potentially contaminating items from "normal" areas.
- Regroup vacuum equipment in HRS area
- Physically separate HRS area from experimental area
- Improve working conditions during interventions on vacuum system
- Retain radioactive gases from vacuum system in new tank (under-pressure)

PSB ISOLDE: Waste



- 30 targets used and declared waste per year, 50% actinide Contaminated and activated Waste
- 350 targets stored in temporary storage area under control of SC-RP.
- Potential radiation hazard:
 - dose rate
 - leakage of contamination
- Project for characterising, preconditioning and eliminating the waste has only just begun
 NUPAC 10.-12.10.2005 Thomas Otto, SC-RP, CERN

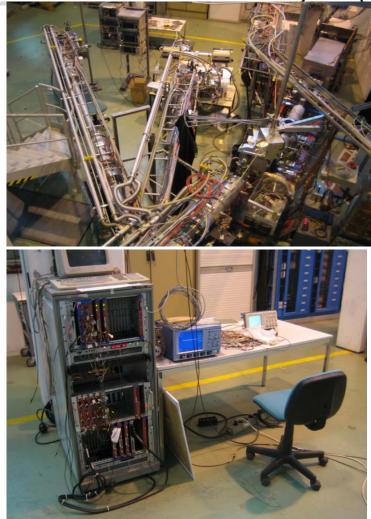
HIE ISOLDE: Waste

- 5 times "more" target waste is going to be produced
 - either more targets or more active targets
- Use of fast-exchangeable components will increase activated waste volume
- Sufficient resources must be available for
 - waste characterisation,
 - pre-conditioning
 - and elimination
- Procedures for waste pre-conditioning and elimination shall take into account volume and activity of HIE-ISOLDE targets.

PSB ISOLDE: Exp. Areas/Contamination

- Contamination control: ISOLDE Exp. Area is "Work sector of type C"
- Fire resistance criteria (roof, windows, gate) not fulfilled in Bat. 170 – little hope to upgrade
- Collections limited in activity (to allow manipulation) – severe for α-emitters
- Off-line workplaces (Bat. 26, Bat. 272): identical restrictions

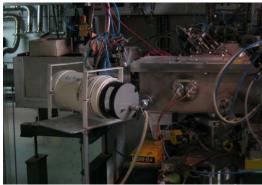
HIE ISOLDE: Exp. Areas/Contamination



- In spite of a 5 times higher availability of isotopes, activity of collections will remain limited to same amounts as at PSB ISOLDE.
- "Collection bunker" at one of collection lines (shielding and contamination control for "large" collections)
- Sealed transport vessels
- Have an off-line type A worksector for manipulations and measurements (see n-TOF-PH2)

PSB ISOLDE Exp. Area / Irradiation

- CERN experimental areas "supervised areas", relatively freely accessible. (Access to ISOLDE controlled due to contamination risk).
 - Effective dose limit for most experimenters: 6 mSv/year (category B) 1 mSv /2 months ("VCT", short term visitor)
- Doserate guideline values:
 - on average 3 µSv/h
 - locally relaxed at passageways, corridors...
 - Potential additional doses from contamination



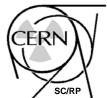
PSB ISOLDE Exp. Area / "Hot Spots"

vacuum pumps

merging switchyard

- from collections,
- at beam loss points
- from the vacuum system

occasionally exceed guideline values.


 Consequently, the PSB proton beam is switched off.

collection point/ ECR vs. RILIS

NUPAC 10.-12.10.2005 Thomas Otto, SC-RP, CERN

HIE ISOLDE: Exp. Area / "Hot Spots"

- New regular "hot spots"
 - RF of LINAC
 - **RF** and beam loss ECRIS
 - RF and beam loss RFCooler
- Others arise temporarily:
 - tape station
 - neutraliser
 - collection points
 - in the beam preparationand transport system
- Shielding is difficult (beamlines too close to each other)

HRS Separator GHM ASPIC. OLDE COLLAPS COMPLIS HV Platform SOLTRAP

Isotope	I or N	H*(10) (1m)	
¹¹ C, ¹⁵ O	10 ⁸ s ⁻¹	16 μSv/h	
¹⁸ Ne	10 ⁸ s ⁻¹	50 μSv/h	
²² Na	10 ¹⁸	3 mSv/h	

(Other values must be calculated case by case, no tabulated data available) NUPAC 10.-12.10.2005

Thomas Otto, SC-RP, CERN

HIE ISOLDE: Exp. Area / Irradiation

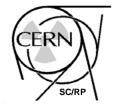
- First measurements: direct radiation from the target area not limiting factor. Neutrons streaming from target into hall via HV-room
- Main radiation hazard from extracted beams
- Option: Experimental area "controlled area" (such as accelerator tunnels at CERN)
 - access and work practice continuously controlled by RP
 - stricter access requirements (personnel must be "occupationally exposed")
 - "Telecommand" experiments from Bat. 507, access only when proton beam is off.

PSB ISOLDE: Operation

- PSB ISOLDE is operated by personnel from experiments. An EIC is "on call" duty.
- Safety-critical events, usually in connection with extracted isotopes ("hot spots", contamination during collections) are discovered late / too late
- These events can lead to operation interruptions and costly clean-up. Personnel might be exposed beyond guidelines or limits during these events.

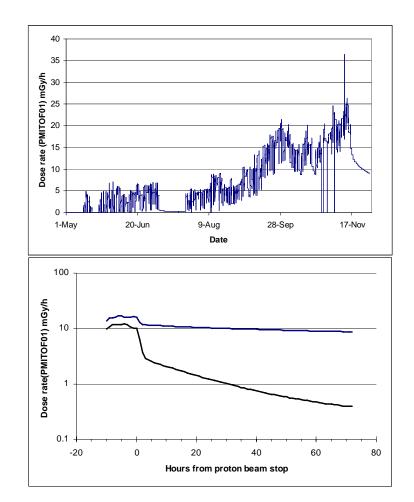
HIE ISOLDE: Operation

- The five-fold potential for safety critical incidents warrants continuous presence of an EIC during operations.
- EIC receives necessary training for first interventions in RP matters
- For certain experiments, RP staff has to be available on-site
 - Mon Fri, 8⁰⁰ 18⁰⁰
 - RP staff on shift work ?



n-TOF-Ph2 Baseline

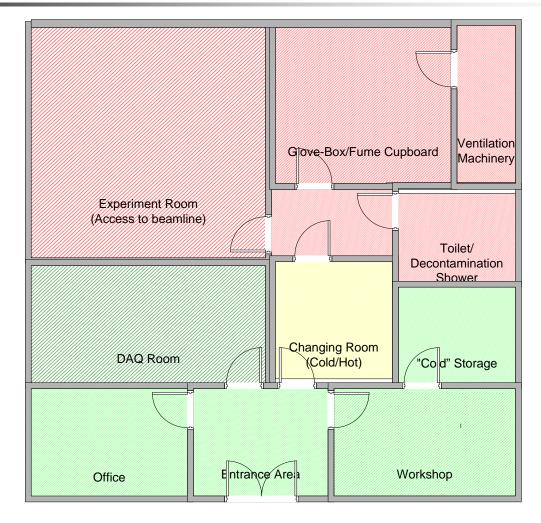
- Spallation target and proton beam similar to existing target, but cladded
- BL 1, 185 m, existing experimental area without contamination control



 BL 2 (vertical), 20 m, experimental area EAR-2

n-TOF-Ph2 target

- New cladded spallation target is required, to prevent heavy radioactive contamination of cooling water.
- The spallation target station must be equipped with monitored ventilation system.
- After estimating activation of air, it may be necessary to construct the ventilation with recirculation or other delay mechanism


n-TOF-Ph2 Exp. Areas

- EAR 1 can receive experiments with inactive targets, and with radioactive samples which are considered "sealed" (ISO 2919) in order to prevent contamination
- EAR 2 should be built in form of a type A worksector.
- Activities remain limited by the fact, that CERN must guarantee the dose limit for the population (1 mSv) during accidents with a probability of more than 10⁻⁴/year

n-TOF-Ph2: basic EAR 2

n-TOF-Ph2: Isotopes admitted

Isotope	Authorisation	Work sector type B		Protection of public	
	Limit <i>L</i> _A	$(10\ 000\ L_{\rm A})$		(1 mSv criterion)	
	Bq	Bq	mg	Bq	mg
Pb-210	5.00E+03	5.00E+07	0.0	2.22E+10	7.8
Bi-207	2.00E+06	2.00E+10	11.9	1.27E+11	75.6
Po-210	2.00E+03	2.00E+07	0.0	7.46E+09	0.0
Ra-226	2.00E+03	2.00E+07	0.5	6.99E+09	191.1
Pu-238	2.00E+02	2.00E+06	0.0	5.32E+08	0.8
Pu-239	2.00E+02	2.00E+06	0.9	4.90E+08	212.5
Pu-240	2.00E+02	2.00E+06	0.2	4.88E+08	57.8
Am-241	2.00E+02	2.00E+06	0.0	5.81E+08	4.6
Am-243	2.00E+02	2.00E+06	0.3	5.95E+08	80.7
Cm-244	3.00E+02	3.00E+06	0.0	9.01E+08	0.3
Cf-252	4.00E+02	4.00E+06	0.0	1.22E+09	0.1

SC-RP Ressources (1)

- At present (PSB-ISOLDE and n-TOF)
 - Section assignment: radiation protection at *all* "low-energy" accelerators and experiments
 - For ISOLDE and n-TOF:
 - 1.5 FTE RP engineers for monitoring
 - 0.2 FTE RP physicist for studies and authorisations
- HIE-ISOLDE / n-TOF-Ph2
 - Significant workload for studies and authorisations
 - physicist/ senior engineer required
 - More RP monitoring for all work in type A worksectors and in controlled radiation areas
 - technician/ tech. engineer required

SC-RP Ressources (2)

LHC startup/commissionning/first years:

- nearly all present RP physicist resources bound to LHC until at least 2011 (LHC will reach nominal intensity)
- numerous additional RP technicians/ engineers are required for LHC operation
- I aditional physicist & 1 technician/engineer requested for "low-energy" programme
 - shared with CTF-3, Linac-4, PS, PSB, East hall...
- The outcome of the requests depends on various factors (budget, personnel and priorities)

Summary

HIE-ISOLDE

- 5-fold increase in intensity and radiation levels in existing buildings, designed for nominal intensity
- Technical investments for target system, ventilation, constructive changes in experimental areas. Experimental area remains a limiting factor !
- Waste!
- n-TOF-Ph2 (EAR-2 and new target)
 - Essentially a new facility which can be built according to safety requirements
 - Few limitations if recommendations are realised
- Ressources
 - Significant additional resources are necessary for planning, operation and safety, in parallel to LHC startup and exploitation