The future of ISOLDE: accelerated radioactive beams

Peter Butler

1. HIE-ISOLDE

2. EURISOL

Users & Science

450 users (7% total CERN) *potentially 1000 users with upgrade*25 countries; 100 institutions
175 projects (4 years)

REX post-accelerator

- Originally constructed by several CERN member states
 ~ 15 MCHF
- Utilises now \rightarrow 50% ISOLDE running time
- In last three years REX has accelerated 33 different RIB
- Present RIB yield from ISOLDE allows 10% of all radioisotopes be used

		Nor	Id ISOL	_	
FACILITY	DRIVER	POWER	USER BEAMS ACCELERATED	ENERGY	PHYSICS REACH
LOUVAINE- LA-NEUVE (BELGIUM) 1989	30 MeV protons	6 kW	⁶ He, ⁷ Be, ^{10,11} C, ¹³ N, ¹⁵ O, ¹⁸ F, ^{18,19} Ne, ³⁵ Ar	10 MeV/u cyclotron	Astrophysics, Nuclear structure
HRIBF Oak Ridge (USA) 1997	100 MeV p, d, α <i>(-ve ion</i> <i>source)</i>	1 kW	⁷ Be, ^{17,18} F, ⁶⁹ As, ⁶⁷ Ga, ⁷⁵⁻⁷⁹ Cu, ⁸⁰⁻⁸⁷ Ge, ⁸⁴ Se, ⁹² Sr, ^{118,120,122,124} Ag, ¹²⁹ Sb, ¹³⁰⁻¹³⁴ Sn ^{132,134,136} Te	2 - 10 MeV/u tandem	Nuclear Structure, Astrophysics
ISAC1 TRIUMF (CANADA) 2000	500 MeV protons	50 kW	^{8,9,11} Li, ^{20,21} Na, ²⁶ Al	1.5 MeV/u linac	Astrophysics
SPIRAL, GANIL (FRANCE) 2001	100 MeV/u heavy ions	6 kW	^{6,8} He, ¹⁸ F, ^{18,24,25,26} Ne, ^{44,46} Ar, ^{74,75,76,77} Kr	2 - 25 MeV/u cyclotron	Nuclear structure, Astrophysics
REX ISOLDE (CERN) 2001	1.4 GeV protons	3 kW	⁹ Li, ¹¹ Be, ²⁴⁻²⁹ Na, ^{28,30,32} Mg, ⁶⁸ Ni, ^{68,69,70} Cu, ^{74,76,78} Zn, ⁷⁰ Se, ^{88,92} Kr, ¹⁰⁸ In, ^{108,110} Sn, ^{122,124,126} Cd, ^{138,140,142} Xe, ¹⁴⁸ Pm, ¹⁵³ Sm, ¹⁵⁶ Eu	0.3 - 3 MeV/u linac	Nuclear structure, Condensed matter, Astrophysics

HIE-ISOLDE

Increase in REX energy from 3 to 10 MeV/u (first step in increase to 5.4 MeV/u)

Increase proton intensity $2 \rightarrow 6 \mu A$ (LINAC4,			
rsb upgraue) - target and nont-en	Collinear Laser		
RFQ cooler, REX-TRAP, REX-EBIS REX-ECR upgrades	Spectroscopy, ISOLTRAP		
Super-HRS for isobaric separation			
RILIS upgrade & LIST	Condensed matter.		
Low energy facility (< 1 MeV/u)	Nuclear		
CERN NuPAC meeting 10-12 Dec 2005	Astrophysics		

Spectrometer plans

Coulomb barrier for RIB

Transfer reactions at high energy

W.N. CATFORD (SURREY)

RIB Physics Reach

Time-line and costs

REX energy upgrade to 5.4 MeV/u2008High intensity upgrade2010REX energy upgrade to 10 MeV/u2011

Material costs Staff 15.3 MCHF 42.5 FTE

Identified sources extra-CERN: ISOLDE collaboration ✓ IKS Leuven BE ✓ EPSRC UK ✓ ISTC, EU, RU VR SE 4.1 MCHF

Operational costs

Existing REX operation 650 kCHF per year (2 engineers, 3 technicians + materials) *Must be transferred to CERN May 2006*

HIE-ISOLDE, additional personnel. operation 3 FTE target/front-end 2 FTE DAQ 1 FTE Secretariat 0.5 FTE

EURONS I³: (2.1 MCHF) TNA JRA's: INTAG, CHARGE BREEDER, LASER, SAFERIB, (TRAPSPEC)

EURISOL DS: (2.8 MCHF) R&D in targets & β-beam radioisotope manipulation safety

100kW direct production
5 MW spallation n target
→ 100 MeV/u RIB

European Roadmap for RIB facilities

Europe 2nd Generation ISOL

FACILITY	DRIVER	POWER	ENERGY
HIE- ISOLDE CERN	PS booster p, 1.4 GeV, 10 μA	10 KW	0.8 - 10 MeV/u linac
SPIRAL-II GANIL	linac deuterons 40 MeV heavy ions 15 MeV/u	200 kW (secondary target)	2 – 25 MeV/u cyclotron
MAFF Munich	reactor	10 ¹⁴ n/cm ² .sec	7 MeV/u linac
SPES Legnaro	linac p,d, 100MeV	200 kW (secondary target)	10 MeV/u linac

Unique Experimental Facility Repertoire: 850 radionuclides from 70 elements

Availability: 350 shifts of radioactive beam /year (2 primary targets & mass separators)

Selectivity: target/ion source expertise, RILIS, mass separation

Postacceleration: REX TRAP+EBIS+LINAC

World machines

Location	Driver	Post-accelerator	Fragment separator	Type of facility
GSI –FAIR	synchrotron, heavy ions: 1.5 A GeV	-	'Super-FRS'	In-Flight
EURISOL	protons, 1 GeV, 1-5 MW	CW Linac, up to 100 A MeV	-	ISOL
USA: RIA Rare Isotope Accelerator	900 MeV protons heavy ions: 400 A MeV, 100 kW	Linac up to 8–15 A MeV	4-dipole Separator	ISOL, In-Flight
JAPAN: RIKEN RIB Factory	Ring-cyclotrons up to 400 AMeV (light ions) up to 150 A MeV (heavy ions)	-	3 fragment Separators storage & cooler rings	In-Flight

SPL versus PS Booster

Costs

Task No	o Task name	Cost	
		Material (kCHF)	Staff (FTE)
1	REX upgrade 5.5 MeV/u	2950	8.6
2	REX upgrade 10 MeV/u	3000	7.8
3	REX TRAP and EBIS upgrades	255	0.5
4	REX ECR chargebreeder	750	1.9
5	RFQ cooler	275	0.9
6	High charge state beam line	400	0.9
7	New HRS	1000	1.6
8	Targetry for linac 4 proton beam	3130	9.5
9	RILIS upgrade	880	1.2
10	Ti:Saphire lasers	400	0.6
11	TS infrastructure improvements	700	1.5
12	AT/VAC consolidations	1550	1.5
13	ISOLDE physics group		6
	Total:	15290	42.5

