

## Potential future proton beam performance at CERN for HIE ISOLDE, n\_TOF phase 2 and EURISOL

Michael Benedikt AB Department, CERN

12/10/05

NuPAC – CERN 2005

M. Benedikt 1



#### Outline

- Introduction
- Performance estimate for 2006-2010
- Upgrades
  - Shorter basic period length (900 ms) upgrade via repetition rate.
  - Linac 4 upgrade via intensity increase.
  - SPL upgrade via duty factor.
  - Performance of upgrades.
- Conclusions

12/10/05



#### Introduction

- Aims of this analysis
  - Estimate availability of proton beams for n\_TOF and ISOLDE 2006 2010.
  - Detection of eventual shortfalls in beam availability.
  - Quantify future upgrade and improvement possibilities.
- Large part of the work was made in the framework of the "High Intensity Proton Working Group" of the AB Department.
- "Report of the High Intensity Proton Working Group", CERN-AB-2004-022 OP/RF



## "Top – down" performance estimate

- Strategy (rules) for the performance estimate:
  - Estimate the yearly time available for physics operation on all machines.
  - Calculate the time (number of cycles) required to fulfil each user request (based on present performance in routine operation, e.g. intensity...).
  - Assign time slots (cycles) to different users, respecting eventual supercycle constraints.
- "Top-down" start with SPS since this is the slowest cycling machine:
  - Fulfil LHC beam request  $\rightarrow$  fixes time left for SPS physics (CNGS + FT).
  - Fulfil CNGS request  $\rightarrow$  fixes time left for SPS FT.
  - All SPS requirements known and also the corresponding PS / PSB cycles.
    → fixes remaining time for PS and PSB physics.
  - Fulfil PS EAST and nTOF requests  $\rightarrow$  fixes PSB time for ISOLDE.
- NOTE: The distribution used for the analysis is by no means a definition of priorities for future operation!

# CERN

### Schedule 2006, assumptions 2007 - 2010

- 2006: total running time 5000 h (PS complex) and 4200 h (SPS complex).
- 2007 2010: total running time 6000 h (PS complex) and 5500 h (SPS).
  - Reduced by start-up, setting-up time and dedicated MDs.
  - Correction for machine availability; experience: 90% (PS), 80% (SPS).
  - Gives effective time for physics operation.

|                              |     | 200       | )6         | 2007 - 2010 |             |         |      |
|------------------------------|-----|-----------|------------|-------------|-------------|---------|------|
|                              |     |           | PSB/PS SPS | PSB/PS      | SPS complex |         | LHC  |
|                              |     | complex   | complex    | complex     | 2007*       | 2008-10 |      |
| Total running time with beam | [h] | 5000      | 4200       | 6000        | 5500        | 5500    | 5000 |
| Setup and dedicated MD       | [h] | 500/1200  | 1200       | 600         | 1000        | 800     | -    |
| Physics operation            | [h] | 4500/3800 | 3000       | 5400        | 4500        | 4700    | -    |
| Effective physics hours      | [h] | 4050/3420 | 2400       | <b>4860</b> | 3600        | 3760    | -    |

- 2006: more time needed for PS and SPS start-up after 18 months shut-down.
- LHC is assumed to run during 5000 h / year.
- 2007\* : Ions for LHC commissioning in SPS requires ~200 h operation time.



#### n\_TOF and PS East Area performance

- Beam requests and standard operation conditions:
  - n\_TOF: 1.5E19 protons on target per year (~1.3E19/y for 2002-2004).
    7E12 pot for dedicated operation and 4E12 pot for parasitic.
    20 GeV/c beam momentum, 1.2 s cycle length.
  - East Area: 1.3E6 spills (2006), 2.3E6 spills (from 2007) for DIRAC.

Spill length of ~450 ms per cycle of 2.4 s. 24 GeV/c beam momentum.

| Year | PS physics operation [hours] | Spills to<br>East Area | East Area<br>request | Protons for<br>nTOF                  | nTOF<br>request        |
|------|------------------------------|------------------------|----------------------|--------------------------------------|------------------------|
| 2006 | 3800                         | $1.3 \times 10^{6}$    | $1.3 \times 10^{6}$  | 1.3 × 10 <sup>19</sup>               | 1.5 × 10 <sup>19</sup> |
| 2007 | 5400                         | $2.4 \times 10^{6}$    | $2.3	imes10^{6}$     | 1.6 × 10 <sup>19</sup>               | 1.5 × 10 <sup>19</sup> |
| 2010 | 5400                         | $2.3 \times 10^{6}$    | $2.3 \times 10^{6}$  | <b>1.6</b> × <b>10</b> <sup>19</sup> | 1.5 × 10 <sup>19</sup> |

- PS physics requests can be fulfilled 2007 2010 (AD physics included).
  - Still PS cycle time available for additional physics / test beams.



**ISOLDE** performance

- Beam request and standard operation conditions:
  - ISOLDE: 50% of yearly PSB cycles (1350 cycles/hour on average).

Beam energy 1.4 GeV (or 1 GeV).

Up to 3.2E13 pot per cycle.

Translates into an average current of 1.9  $\mu$ A.

| Year | PSB physics operation [hours] | PSB cycles to ISOLDE<br>[%] [cycles/h] [µA] |      | PSB cycles requested<br>[%] [cycles/h] [µA] |     | ested<br>[μA] |     |
|------|-------------------------------|---------------------------------------------|------|---------------------------------------------|-----|---------------|-----|
| 2006 | 4500                          | 50 %                                        | 1350 | 1.9                                         | 50% | 1350          | 1.9 |
| 2007 | 5400                          | 44 %                                        | 1185 | 1.7                                         | 50% | 1350          | 1.9 |
| 2010 | 5400                          | 47 %                                        | 1260 | 1.8                                         | 50% | 1350          | 1.9 |

- 2006 performance ok.
- Isolde performance estimated to ~10% below request for 2007-2010.

12/10/05

## Discussion on performance 2007 - 2010

- n\_TOF and East Area requests can be fulfilled 2007 to 2010.
  - − Even some more PS time available as reserve or upgrade  $\rightarrow$ OK.
- ISOLDE performance estimated ~10% below request for 2007 to 2010.
  - ...may be not too dramatic at first sight but looking in more detail to the PS:
    - No cycles for East Area test beams taken into account (time available).
    - Any additional PS programme will take away PSB cycles from ISOLDE and lead to a further performance degradation.
  - ...and looking in more detail to the SPS:
    - Performance analysis on SPS revealed shortfall of SPS time for CNGS and COMPASS operation (2006-2010). One possibility for improvement:
    - Significant increase of intensity per SPS CNGS cycle.
    - Major ingredient is "double batch injection" from PSB to PS which means that 4 instead of 2 PSB cycles are required per SPS CNGS cycle.
    - Would significantly decrease ISOLDE performance.



#### **Upgrades and requirements**

- There are clearly arguments to look at an accelerator complex upgrade at the level of the PS-Booster. Such an upgrade could be basis for:
  - ISOLDE upgrade.
  - Full use of the available operation time on the PS (upgrades or add. physics).
  - Improvements for physics on SPS without negative impact on ISOLDE.
- Two directions to follow:
  - Increasing the repetition rate (improved duty cycle: pulse length/cycle).
  - Increasing the intensity.
- Upgrades at PSB level:
  - Faster cycling of complex: 900 ms instead 1200 ms  $\rightarrow$  repetition rate.
  - Linac 4 as new PSB injector:  $\rightarrow$  increasing the intensity.
- Upgrade with Superconducting Proton Linac (SPL):
  - SPL replacing Linac & PS Booster: large gain via duty factor (50 Hz).



#### Aims for upgrades

- For "standard" ISOLDE operation:
  - More than 50% of PSB cycles (some reserve) or  $\geq 2~\mu A$  average current.
  - Corresponds to  $\geq$  2.8 kW beam power at 1.4 GeV.
- HIE ISOLDE:
  - Factor 5 higher average current than presently available ~10  $\mu$ A current.
  - Corresponds to ~14 kW beam power at 1.4 GeV.
- EURISOL:
  - 5 MW beam power for neutron converter target (at few GeV).
  - Few 100 kW beam power for direct targets (1 to 2 GeV)

# CERN

### Upgrade 1: 900 ms basic period operation

- AIM increase the number of proton cycles available from the PS Booster
  - Presently Linac 2 and PSB cycles are repeated every 1.2 s
  - PS and SPS cycles are integer multiples of the 1.2 s basic period.
- Basic period of 900 ms means 33% more PSB cycles available (1.2/0.9).
- Consequences for accelerator operation
  - Cycles on all machines integer multiples of 900 ms
  - Linac2 and PSB pulsing at 900 ms.
  - PS: most cycles can be adapted to 900 ms basic period (not n\_TOF).
  - SPS: long cycles, relatively unaffected.
- ISOLDE: basic beam parameters unchanged
  - PSB cycle 0.9 s instead of 1.2 s. Beam energy as present 1.4 (1.0) GeV.
- n\_TOF: two scenarios with different proton energies
  - PS cycle 1.8 s instead of 1.2 s. Proton beam energy up to 24 GeV/c.
  - PS cycle 0.9 s instead of 1.2 s. Proton beam energy reduction to 15.3 GeV/c.



#### Summary of 900 ms test in 2005

- Full scale test over 4 weeks in 2005 (Linac2 PSB ISOLDE, Linac3)
  - Change of machine timing and control system to 900 ms basic period.
  - "Routine" operation for ISOLDE physics and tests of all physics beams.
- Test results Linac2-PSB
  - No evidence for technical problems on Linac2, PSB and transfer lines.
  - Nominal PSB performance for all physics beams (ISOLDE, PS, SPS beams).
  - Radiation increase proportional to flux increase, overall beam loss pattern similar to 1.2 s operation. Close to limits when max. intensity on all cycles!
- ISOLDE high intensity tests towards HRS
  - Using all cycles, a performance of  $\frac{1}{2}$  HIE ISOLDE was reached.
  - 3E13 pot per 0.9 s gives 5.3  $\mu A$  or 7.5 kW that were delivered to HRS.
  - Main problems were radiation related. Radiation protection is a major issue.
- Open issues
  - Tests of 900ms compatible cycles on PS, SPS (esp. CNGS cycle in PS).



#### Upgrade 2: Linac4

- Aim is increase of PSB intensity per shot by increasing the transverse density of the beam (beam brightness, *N*/ε).
- Achievable beam brightness is limited by space charge of the beam.
  - Defocusing effect of space charge leads to a tune spread  $\Delta Q$  in the beam.
  - Once  $\Delta Q$  becomes too big, parts of the beam cannot be controlled anymore.

• Keep  $\Delta Q$  constant, act on relativistic parameters to increase  $N_{\rm b}$ .

 $\infty$ 

- Most important at low energy  $\rightarrow$  therefore increase injection energy.
- Linac4 injection energy 160 MeV instead of 50 MeV gives factor 2.
- Expect factor 2 increase in max. intensity from PSB  $\rightarrow$  ISOLDE, (high int.)
- Expect factor 2 increase in density, important for small beam like LHC.



### Linac4 – parameters and status

- Location: PS South Hall and extension
- Technical Design report in preparation (publication mid-2006)
- Possible planning:
  - Authorization: December 2006
  - Construction: 2007-2010
  - Setting-up & commissioning: 2010
  - Availability (replacing Linac2): 2011

Linac4 - characteristics

| Ion species               | H-                 |     |
|---------------------------|--------------------|-----|
| Kinetic energy            | 160                | MeV |
| Mean current during pulse | 40                 | mA  |
| Pulse duration            | ≤ 0.4              | ms  |
| Particles per pulse       | ≤ 10 <sup>14</sup> |     |
| Pulse repetition rate     | ≤2                 | Hz  |
| Beam power (160 MeV)      | ≤ 5                | kW  |
| Bunch frequency           | 352.2              | MHz |

- 3 MeV test place construction (front end for Linac4)
  - Ongoing project supported by HIPPI (FP6) + IPHI (CEA+IN2P3+CERN).
  - Location: PS South Hall extension (future location in Linac4).
  - Test with beam : 2007-2008.



#### **Performance for Linac4**

#### • ISOLDE

- Around twice the presently obtained max. current (~6.4E13 pot/cycle).
- For the target, the peak power will be also twice the present value.
- $3.8 \mu A (5.3 kW)$  for 1.2 s operation with 50% PSB cycles and 90% efficiency.
- 5.1  $\mu$ A (7.1 kW) for 0.9 s operation with 50% PSB cycles and 90% efficiency.
- Linac4 with 900 ms reaches ~half the desired HIE ISOLDE performance.

#### • n\_TOF

- Linac4 reduces space charge at PS-Booster injection but does not change space charge limits at PS injection.
- Transverse and longitudinal limitations in the PS remain identical to now.
- Detailed investigations needed to quantify potential gain.



| 2006 Accelerator complex performance      |            |                |                  |            |                 |  |
|-------------------------------------------|------------|----------------|------------------|------------|-----------------|--|
|                                           | Request    | 1200 ms        | 900 ms           | Linac4     | Linac4 + 900 ms |  |
| ISOLDE [pulses/hour]                      | 1350 (50%) | 1350 (50%)     | 2150 (60%)       | 1350 (50%) | 2150 (60%)      |  |
| Average current [µA]                      | 1.9        | 1.9            | 3.1              | 3.8        | 6.2             |  |
| nTOF [ $\times 10^{19}$ pot/year]         | 1.5        | 1.3            | 1.6              | 1.3        | 1.6             |  |
| East Area [× 10 <sup>6</sup> spills/year] | 1.3        | 1.3            | 1.3              | 1.3        | 1.3             |  |
|                                           | 2007 Ac    | celerator comp | olex performance | 9          |                 |  |
|                                           | Request    | 1200 ms        | 900 ms           | Linac4     | Linac4 + 900 ms |  |
| ISOLDE [pulses/hour]                      | 1350 (50%) | 1185 (44%)     | 2060 (57%)       | 1210 (45%) | 2160 (60%)      |  |
| Average current [µA]                      | 1.9        | 1.7            | 2.9              | 3.5        | 6.2             |  |
| nTOF [ $\times 10^{19}$ pot/year]         | 1.5        | 1.5            | 1.6              | 1.6        | 1.6             |  |
| East Area [× 10 <sup>6</sup> spills/year] | 2.3        | 2.4            | 2.4              | 2.4        | 2.4             |  |
| 2010 Accelerator complex performance      |            |                |                  |            |                 |  |
|                                           | Request    | 1200 ms        | 900 ms           | Linac4     | Linac4 + 900 ms |  |
| ISOLDE [pulses/hour]                      | 1350 (50%) | 1260 (47%)     | 2140 (59%)       | 1260 (47%) | 2160 (60%)      |  |
| Average current [µA]                      | 1.9        | 1.8            | 3.0              | 3.6        | 6.2             |  |
| nTOF [ $\times 10^{19}$ pot/year]         | 1.5        | 1.5            | 1.6              | 1.6        | 1.6             |  |
| East Area [ $\times 10^6$ spills/year]    | 1.3        | 2.3            | 2.4              | 2.4        | 2.4             |  |

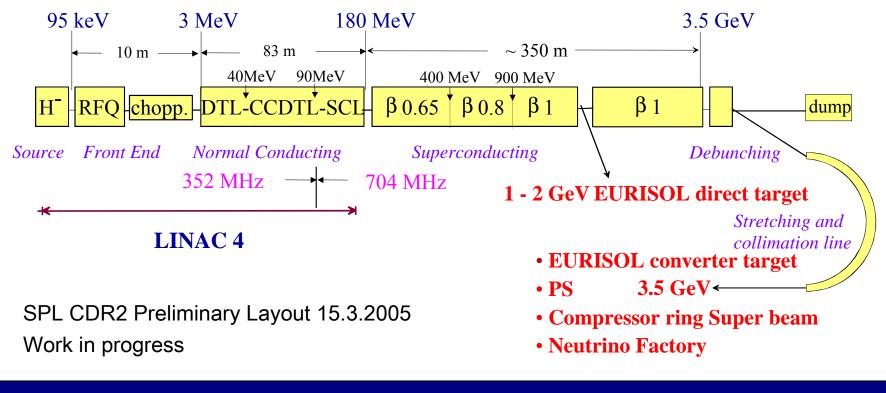
12/10/05

NuPAC – CERN 2005

M. Benedikt 16

## **Upgrade 3: Superconducting Proton Linac**

- Large scale upgrade of the complex. SPL replaces the PS-Booster and uses Linac4 as front end.
- 5 MW machine, the high power is achieved via an enormously improved duty factor and higher energy:
  - 50 Hz (20 ms) operation in comparison to 1200 or 900 ms repetition time.
  - 5 MW available at 3.5 GeV.


| Ion species                   | H-   |     |
|-------------------------------|------|-----|
| Kinetic energy                | 3.5  | GeV |
| Mean current during the pulse | 50   | mA  |
| Mean beam power               | 5    | MW  |
| Pulse repetition rate         | 50   | Hz  |
| Pulse duration                | 0.57 | ms  |
| Duty factor                   | 2.82 | %   |

- Due to high duty factor relatively low peak power on target.
- Mean current in pulse of 50 mA compared to 5 A at present.



#### SPL beam sharing

- Simultaneous operation of direct target (~100 kW at around 1 GeV) and converter target (≤5 MW at 3.5 GeV) or MMW (super beam, v-factory).
  - − In shared operation reduced power (100kW @  $1 \text{GeV} \rightarrow 350 \text{kW}$  @ 3.5 GeV).
  - Gap in each 50 Hz pulse is created at low energy (3MeV). At the sharing energy a section with a fast deflector is inserted. Sharing energy is fixed.





#### **Performance for SPL**

- EURISOL
  - Up to 5 MW on converter target at 3.5 GeV proton energy.
  - Few 100 kW at ~1 GeV (up to 1.4 MW available).
  - For the targets: peak power in pulse significantly reduced in comparison to present situation (much higher duty cycle and lower current).

#### • n\_TOF

- SPL injection into PS at 3.5 GeV reduces space charge (factor 3.85 in  $\beta\gamma^2$ ).
- Transverse situation is improved and should allow for higher brightness.
- Longitudinal limitations in the PS remain identical to now.
- Overall performance increase needs to be studied.
- Other high-power users (periods without EURISOL converter operation)
  - multi-MW operation for Superbeam / v-factory.
- Various other benefits for the different operations (brightness LHC, etc.).



- All approved and anticipated requests for physics on PS can be fulfilled from 2007 – 2010. ISOLDE performance is estimated at around 10% below request.
- 900 ms operation is a short term upgrade that could quickly bring a significant performance increase (~50%) for ISOLDE and flexibility for improvements for PS or SPS physics at relatively low cost.
- Linac4 is a medium term upgrade (factor 2) for ISOLDE with several improvements for other physics programmes. Also a first step towards SPL. Brings ~60% of HIE goal when combined with 900 ms.
- SPL is a a longer term upgrade for ~2015 if decided by ~2010. Multi-MW machine with many potential applications.