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Overview

* D@ Run Il detector and trigger system

* calorimeter: jets, missing Er
electrons, photons, tau

* muon system: triggers
muon identification

* tracking: triggers
track reconstruction
vertices

b-tagging

mostly a broad overview;
some recent topics in more detail
main focus on high-level physics objects




Disclaimer

| am not showing any official D@ physics results here!
see Daniel Bloch’s talk this afternoon for those
plus a number of parallel session talks

All plots and numbers are for illustrative purpose only
demonstrating the hard work put into understanding
the detector response and physics objects
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D@ detector features

* large 17 coverage of tracking, calorimeter and muon system

* small outer radius of tracking detector
— limited charged particle momentum resolution

* larger inner radius of tracking detector: 2.6 cm
(compared to 1.5 for CDF — to be matched by D@ soon)

I RS * small number of hits
= per track
— not much redundancy

* toroid magnet for muon
momentum measurement
independent of tracking




D@ trigger system
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Trigger rates

% L1 input rate: 7.6 MHz (132ns)
* L1 output rate: initial design 10 kHz
limited to 1.5 kHz for tracking readout with <5% deadtime

* L2 output rate: 1kHz
more refinement, less rejection than initially planned

* L3 output rate: 50 Hz
doing full (fast) event reconstruction for L3 decision

making efficient use of available bandwidth:

* two years ago: transition from physics group-requested triggers
to more generic triggers

* additional systems commissioned (STT, L2PS)
— better rejection at early stages

* detailed trigger list evolving with increasing luminosity
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Calorimeter triggers

pseudo-projective towers with (Ayp,An)=(0.1,0.1)
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L1 triggers on fast energy sum in (Ap,An)=(0.2,0.2) regions,
total E1 sum,

missing Er
L2 does E+ ordering and fast clustering for jets and EM objects



™ Jet definition

D@ jet definition based on calorimeter only
(track jets treated separately and matched at later stage)

D@ is typically using a cone algorithm:

* all particles (calo towers, MC particles, partons) are seeds
* four-vector sum of all particles in cone (— jet axis)

* move cone axis to jet axis

* iterate until stable jet axis = cone axis

* introduce mid-points between jet candidates as additional seeds
— address issues with infrared safety

* merge/split overlapping jets according to momentum fraction in overlap

\



Jet history

jet algorithm evolved from Run |. improvements:

* boost-invariant R and recombination scheme (four momenta)

* infrared safety due to mid-point seeds
allows consistent treatment of parton level

clearly an improvement. but open issues remain:

* collinearity issues due to pr ordered seeds may impact low pr jets
A

- . o
“ .~

------

kr algorithm does better here, but detector effects harder to control.
minor issue in practice for large pr physics

* detector response! —jet energy scale



Jet energy scale

reconstruction of jet energy is distorted by
* additional interactions ‘

E = EmeaS_Eoffset

Rcone*Rresponse

* electronic noise

_ _ yoffsets
* noise from Uranium decay

* pileup from previous bunch-crossings

WV

* energy deposition outside jet cone
»factors

p

* different response for different particles

additional problem: =20% of b-jets have muon + neutrino

JES dominates systematic uncertainties for e.g. top mass measurement

ﬁ;;ﬁﬁ ongoing effort towards better understanding



JES: offset energy

* additional interactions
* electronic noise
* noise from Uranium decay

* pileup from previous bunch-crossings

can be evaluated with triggers on bunch-crossings without hard interaction
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g -y |’- Es 52?:?3 :gg;:: -
;i E Pk EIF(” 0001382 + 0002218 lz.gz-}_;‘i Of underlylng events
¢ b Ta2 s . st :
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- S overlap region:
WL different ADC to energy
- conversion factors
1 —
- uncertainties:
0.5:— Wi - - & statistical
- luminosity dependence
I_ | 1 1 | 1 1 | | 1 1 | | | 1 | 1 | |
0ol : : 3 ; ¢ dependence

Detector |7|
reminder: no official D@ results!



JES: out of cone energy

* energy deposition outside jet cone

can be evaluated with back-to-back di-jet events:

— get jet energy density dependence on \/Ay?2 + Ap? wrt jet axis
— subtract baseline (see previous transparency)

— calculate fraction of jet energy inside cone radius

in bins of E and n

| Corrections factors |
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BUT: need correction for physics out of cone showering! — from MC



JES: calorimeter response

* different response for different particles

the dominant effect (both value and uncertainty)!
measured using missing Er projection fraction method (like Run I):
— take v 4+ 1 jet events
— different response to v and jet — apparent missing Er
— hadronic response can be derived from EM response
— EM response can be measured in Z—ee events
(many complex details not mentioned here)

* special treatment of semileptonic b jets

— subtract 1 MIP from calorimeter energy
— add muon energy from tracking or muon system
— correct for neutrino momentum using Monte Carlo



m Overall jet energy scale
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two of the effects potentially limiting jet response understanding:
* calorimeter calibration * calorimeter resolution



Calorimeter calibration

proper calibration of calorimeter response is crucial!
D@ calibrates ADC response by charge injection
No calibration of the cell response itself

Cell response varies as welll (Run | mech tolerances vs. Run Il timing...)
Extreme example:

- Zmass = 91.186 + 0.071 GeV - zZmass = 88.55 + 0.24 GeV
? resn = 3.344: 0.072 GeV 2 60— resn = 292+ 0.24 GeV
gsm Nz = 4440+ 30 ek Nz = 3143+ 6.5
= = 50—
3500 2 r
§ E 40—
" 400 T
30—
300 -
200 20;*
100 m;_
% 7 ""mé(;m""éu-'-m";uﬁm R % 70 80 90 100 110 120
candidate mass (GeV) candidate mass (GeV)
Z—ee test sample same sample, one e in module 17
mass 91.2 GeV mass 88.6 GeV !!!
width 3.3 GeV width 2.9 GeV

reminder: neither plot represents official D@ Z results!



Calorimeter calibration ||

response calibration using physics signal like Z—ee:

not enough statistics to do this on cell level with individual process,
but Tevatron physics is @-independent! (unpolarized beams)

Eﬁ@ apply ¢ intercalibration (here: EM calorimeter)

* take data sample with EM trigger
* in 1 bins, correct cell energies by scale factor — ¢ uniformity

* use e.g. Z—ee events for absolute calibration of each 1 bin

h

| Correction factors for ieta=-5 vs. iphi I
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Calorimeter resolution

Let’s look at Z plots again:

— zmass = 21.00120.063 GeV o zmass = 90.937 + 0,048 GeV
% - resn = 2.843 + 0.068 GeV 0 oool resn = 2,182z 0.055 GeV
‘f,_ 700— Nz = 4444:29 ff L.
Eeoo_ =
— 800 —
>500— S
i 600—
400— i
300 — 200—
200 — C
= 200—
100— i
0 - T e -y D_
60 70 80 20 100 110 120 60 70 30 90 100 110 120
candidate mass (GeV) candidate mass (GeV)
Z—ee with ¢ intercalibration Monte Carlo sample
width 2.8 GeV width 2.2 GeV

Potential reasons for worse resolution in data than MC:
* different response depending on where particles hit the cell?

* material simulation (esp. amount and inhomogeneity) in front of calo!
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SOLNG Seln Aluminium

BOLN: Soln Aluminium.

SOLM: Solm ML
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current simulation improved simulation

* solenoid was just a homogenous cylinder. now: a real coil!

* inner calorimeter cryostat wall was way too thin

o
R
i

S@ lesson: sooner or later this will hit you, so better fix it now!

impact on agreement data/MC to be evaluated...
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‘ g._ﬁ Calorimeter noise suppression
_ 4

T42 algorithm (before actual clustering!):

* keep only cells 4 sigma above threshold

* keep neighboring cells that are 2 (actually 2.5) sigma above threshold

(inspired by H1)

removes about 40% of the cells!

positive impact on physics
(resolutions!)
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More calorimeter objects

y& 7 leptons — dedicated talk on 7 ID by M. Heldmann on Friday



Missing transverse energy

"neutrino identification” (and other non-interacting particles)
crucial e.g. for distinction tt di-lepton events vs. leptonic Z decays plus jets

big concern: how to distinguish actual MET from
* detector resolution effects

* primary vertex misidentification
* calorimeter noise

* “hot” or missing calorimeter cells

approach:
* propagate EM scale and hadronic jet energy scale to MET

* detailed monitoring of D@ data for detector problems:

metbxyMEAN:Ibkno {runno=-194696} |

non-isotropic ¢ distribution of good jets .-
large /(METx)2 + (MET,)? ﬂ
real MET should be symmetric in ¢ on average! -

el TS,

x1
3448 5 3448 55 3448.6 3448.65 3448 T 3448 75



EM objects |

typical selection criteria for (isolated) electrons at DO :

* electromagnetic energy fraction >0.9

* calorimeter isolation cut

* pr cut

% track match with x2 probability requirement
matching either calo — preshower — track
or track — preshower — calo

* shower shape likelihood (“H-Matrix”) cuts:
full H-matrix has 8 variables:
energy fraction in 4 EM layers
total EM energy
vertex z position
transverse shower width in ¢
transverse shower width in z (bad MC description — typically excluded)



EM objects |l

typical selection criteria for photons at D :
same as electrons, but no track match

but: large background from electrons with missing track/bad matching
especially in forward region

new development: “hits on the road” method

* calculate road of charged particle EM
from primary vertex to preshower
assuming Er of EM aobject
(two possibilities)

* count number of tracker hits
close to trajectories

%— rate of electrons
misidentified as photons
decreased by factor of four!
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Muon Scintillators y
s s

“&n Chambers | L 1
M | v& look for track stubs in drift chamber
__ Shielding

* merge with scintillator hits

Calorimeter

i —— * independently, merge CFT tracks
= with scintillator hits

(=)
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L2

* redo track fit in each muon layer
* merge all layers to muon track

* track matching to central tracker (in global L2 system)



Muons in offline reconstruction

selected current issue:
* large hole of inner muon layer on bottom of detector
— track match to muon system difficult (through toroid!)

* can we reconstruct muons without the muon system?
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D@ track triggers

* L1CTT: p; ordered list of fiber tracker tracks
input for L1 muon trigger
input for L2 silicon track trigger

* L2STT: p; and impact parameter ordered lists of global tracks
* L2CTT: input either from L1CTT or from L2STT

(currently both for commissioning)

b-tagging at L27?
* several fast L3 tracking algorithms (different strategies)

* primary vertex finder for z cuts, jet ID, missing Er

no forward tracking at trigger level!

i




track reconstruction history

small tracker, not much redundancy! (= 20 hits per track)

Original tracking algorithm:

standard road search with Kalman filter fit
did not cope well with high track densities, noise, inefficiencies

later supplemented by histogram
track finder (Hough transform)

* find peaks in y-p; plane
* 2d Kalman filter

* histogram filter for r-z
v& 3d Kalman filter

* do this separately for SMT /CFT
and extrapolate to CFT/SMT

combination of the algorithms:
very efficient, but high fake rate
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track reconstruction today

alternative algorithm tuned for b physics:
* low p; tracks * long-lived particles (K%, A v conversions)

approach: another road search algorithm, BUT:
* allow many missed detector layers

* primary vertex hypothesis for non-SMT tracks

* keep ambiguities until final stage
(several track candidates sharing hits, multiple stereo projections)

* when finally resolving ambiguities, prefer “better” tracks

best bet: extend new road search with histogram seeds!

efficiency fake/{fake+reco)
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checking track uncertainties

do our track covariance matrices make sense?
IP uncertainty assigned to tracks by tracker is crucial for vertexing.
compare:

* errors assigned by track reconstruction
(based on material in propagator + on assumed hit resolution)

* actual spread of IP on track associated with primary vertex

(QCD sample with VO removal):
(done for D@ B; mixing study)

data_hitmin2_hmsk-h1-11_h2-12_clw-eq2 data_hitmin2_hmsk-h1-11_h2-12_clw-eq2

14 S ——— 14

366261 379731

12 12

10 10

before scaling | after scaling o

4= ’ '. : w ) 4__'

6 S5 4 3 2 A 0 1 2 3 6 5 4 3 2 4 0 1 2 3

horizontal: -In(p?sin®0), vertical: In(c%,)



573& material simulation

most likely reason for underestimated errors:
improper material representation in simulation and track propagators
material distribution can be evaluated by conversions:

A0t

v & ¥

Asqrtlposv0[D]*posvil] « posvO1]"posva[1]<8)




conversion tomography

tracker volume cross-section as seen with conversions:

|z|<6cm (MC)

E |z|<6cm | 250__
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conversions show clear differences!
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Bj magnetic field correction

powerful tool for evaluation of material + magnetic field:
masses versus pr for K, J/1, ...

| Mass vs pT r<10 |z|<7.2 with no corrections | | Mass vs Pt BField=.9970 A=2.5 B=1.75 r<10 |z|<7.2 |
0.5 0.5
0.498|— 0.498—
B 1 ) SN A s R S B S ) e S 1 A S R O S RS S AL R e S S i 1 AR é"" '_"."""'"". """ == =" i """ . """."'
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— . =5
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0492 0.492
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0_4BB_IIIIIII|III|III|III|I DI4BB_IIIIIIIIIIIIII|IIII|IIII|IIII|IIII|IIII|
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before and after: fit energy loss and magnetic field to match K; PDG mass



Primary vertex reconstruction

\/ s
primary vertex fit: \/‘\“

i

L

* group tracks along z, Az<2cm /i\ -~ T

* each cluster: fit all tracks to common point — beam spot

* run tear down vertex finder on tracks with ip/o(ip)<3
fit vertex

reject track with largest x? contribution
iterate until x? <10

identify hard scatter vertex according to p; spectrum of tracks

a lot of pitfalls on the way:

* split vertices: two track vertices very close to primary
— retuned vertex x? cut

* min bias vertex select as hard due to single high pr track
— moved from Sum(Log(pr)) to vertex probability

* initial track selection had DCA cut relative to (0,0,0) — vertex biased
— went to two pass fit



b-tagging

D@ uses several b-tag algorithms:

* secondary vertex tag
run cone algorithm on tracks
reject tracks likely from Kg, A, conversions
build up vertices from large impact parameter tracks
select vertex with largest 2d decay length

* tag number of tracks with large impact parameter
* jet-based b probability based on track impact parameters
* soft muon in jet (not yet certified)

mid-term trend is towards combination of taggers!
* lose secondary vertex

* additional variables (e.g. vertex mass, fit quality, other taggers, ...)

need to evaluate performance without relying too much on MC
* material simulation under construction

* noise simulation inadequate (to be fixed by min bias overlay)



b-tagging fake rate

* light quark mistag rate: from negative tags + MC correction
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| b-tagging efficiency

* tagging effiency from “System8”
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System8

* use two data samples with different b content
e.g. 1 in jet sample, 1 in jet sample with b-tagged away jet

* run same tagger plus another uncorrelated tag on muon-jets

2 double-tag rates
2 initial sample sizes

=8 known parameters

unknowns: 2 b-tag efficiencies
2 background tag efficiencies
2 true b content
2 true non-b content
=8 unknown parameters

* obtain efficiencies (4+uncertainties) from non-linear equation system



Conclusion

many topics not discussed, e.g.
* understanding of triggers

* detector alignment

Run Il physics commissioning is basically complete;
still working on improvements/fixes, e.g.

* reduction of jet energy scale uncertainty
* improvements of calorimeter calibration
* more realistic detector simulation

* tuning of track reconstruction

D@ is producing good physics results!
Daniel Bloch will prove that this afternoon

...let’s start with Run llb commissioning]!
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System8: equations
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Silicon Track Trigger

physics certification ongoing:
* excellent agreement with
trigger simulation

* ~80% track efficiency
wrt offline tracking

* good track parameter correlation
wrt offline tracking

a powerful tool:

bb trigger (2 jets, 1 b-tag at L3):
introduction of STT reduced

rate by 30%, only 3% efficiency loss
(M. Michaut)



Trigger tool: DOTrigSim

Almost all trigger systems included in trigger simulation:

* operating on MC samples or actual recorded data
* simulates response of hardware triggers (L1)
* uses actual trigger software for L2, L3 response

and for commissioning!

. e.g. of our new Silicon Track Trigger



track reconstruction today

Smart Combination of All Algorithms

AATrack HTF

1

GTR Track refit




