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The plan for this talk is:

• Present a condensation of CDF7117, an investigation of the

Bayesian approach to setting cross section upper limits.

• Mention available Bayesian limit calculating software.

• Concluding observations.
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The problem: n events are observed in an experiment with Pois-

son probability

P (n) =
e−(εs+b)(εs + b)n

n!
We wish to set an upper limit on the cross section s. The

acceptance ε and the expected background b are known with

some uncertainty. For simplicity, CDF7117 deals primarily with

the case σb = 0; the extension to σb > 0 is straightforward.

The Bayesian approach then requires priors for s and ε (and for

b, when σb > 0).
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The Acceptance Prior
The acceptance (here, the product of efficiency and luminosity)
is normally measured in a separate, subsidiary, measurement or
calculation. For CDF7117, we defined a specific subsidiary mea-
surement precisely, which led to a gamma distribution prior for
the acceptance. For σε = 10%, the gamma and Gaussian are
quite similar:
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The Cross Section Prior

We take the prior for s to be flat for s ≥ 0. This is well behaved

when combined with a gamma prior for ε, but badly behaved

with a truncated Gaussian ε prior. Luc Demortier will discuss a

promising solution to this problem that involves a different cross

section prior (the usual “cutoff” solution is unpleasant).
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Marginalized Posterior p.d.f. for s

From the likelihood and the priors, we obtain the joint posterior

p.d.f. for the cross section and nuisance parameters. Integrat-

ing over the nuisance parameters then yields the marginalized

posterior p.d.f. for the cross section.
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The posterior is the “answer” in the Bayesian approach; one

should look at its shape before proceeding. One obtains an

upper limit at credibility level β by finding su such that fraction

β of the posterior is < su.

In the Bayesian approach, when n = 0, the posterior for s, and

hence the limit, is completely independent of the expected back-

ground b (and σb). Conceptually, when n = 0, we know that

there were exactly zero signal events and exactly zero back-

ground events, yielding effectively perfect separation of signal

from background in this special case. (The same conclusion

does not necessarily hold in a frequentist approach.)
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90% Upper Limits

ε = 1.0± 0.1
n b = 0 1 2 3 4 5 6 7
0 2.3531 2.3531 2.3531 2.3531 2.3531 2.3531 2.3531 2.3531
1 3.9868 3.3470 3.0620 2.9019 2.8000 2.7297 2.6783 2.6391
2 5.4669 4.5520 3.9676 3.6026 3.3623 3.1953 3.0736 2.9816
3 6.8745 5.8618 5.0463 4.4644 4.0571 3.7666 3.5534 3.3922
4 8.2380 7.1964 6.2451 5.4751 4.8914 4.4569 4.1313 3.8832
5 9.5714 8.5213 7.5063 6.6022 5.8579 5.2719 4.8180 4.4660
6 10.8826 9.8288 8.7885 7.8047 6.9344 6.2066 5.6184 5.1499
7 12.1766 11.1203 10.0703 9.0460 8.0904 7.2450 6.5289 5.9387
8 13.4570 12.3984 11.3441 10.3014 9.2952 8.3635 7.5374 6.8300
9 14.7261 13.6655 12.6085 11.5575 10.5247 9.5365 8.6250 7.8142

10 15.9858 14.9233 13.8641 12.8090 11.7630 10.7415 9.7701 8.8758
11 17.2375 16.1732 15.1121 14.0542 13.0017 11.9621 10.9525 9.9966
12 18.4823 17.4163 16.3533 15.2934 14.2371 13.1881 12.1560 11.1582
13 19.7210 18.6535 17.5887 16.5269 15.4682 14.4139 13.3692 12.3452
14 20.9545 19.8854 18.8191 17.7554 16.6946 15.6373 14.5856 13.5459
15 22.1832 21.1127 20.0448 18.9795 17.9169 16.8572 15.8014 14.7528
16 23.4078 22.3359 21.2665 20.1996 19.1353 18.0737 17.0151 15.9612
17 24.6286 23.5553 22.4845 21.4161 20.3502 19.2868 18.2261 17.1689
18 25.8459 24.7714 23.6992 22.6294 21.5619 20.4969 19.4344 18.3747
19 27.0601 25.9844 24.9109 23.8397 22.7708 21.7042 20.6400 19.5784
20 28.2715 27.1946 26.1199 25.0474 23.9770 22.9090 21.8432 20.7799
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Coverage

The coverage probability, a function of the true value of the cross

section (and nuisance parameters), is the (frequentist) probabil-

ity that a repetition of the experiment will yield a limit that

includes the true value of the cross section.
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Bayesian methods achieve average coverage, as defined in CDF7117.

Frequentists often want minimum coverage for this Poisson case,

in which constant coverage is not possible. With an (improper)

flat cross section prior, it appears that both average coverage and

minimum coverage are achieved for upper limits in the Bayesian

approach.

(We use credibility level in a Bayesian context, and confidence

level in a frequentist context.)
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Another quantity of interest is the expected limit, or sensitivity,

as a function of the true cross section.
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Currently Available Bayesian Limit Software from CDF

www-cdf.fnal.gov/physics/statistics/statistics_software.html

• C code from CDF7117 study: gamma acceptance and back-

ground priors, various cross section priors. User can obtain

posterior p.d.f., integral of posterior, upper limit at requested

credibility level. Very fast execution time. User guide is

CDF7232.

• bayes.f by John Conway. Traditional approach with trun-

cated Gaussian priors for acceptance and background, flat

prior with cutoff for cross section. Returns upper limit at re-

quested credibility level. Slower because of MC integration.

See CDF4476 by John Conway and Kaori Maeshima.
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Other code available privately from John Conway:

bcorr.f - multi-channel counting experiment with

correlated and uncorrelated uncertainties

(between channels, and between signal and

background) a la CDF 6428

fit.f - likelihood fit to spectrum with signal plus

n background sources, including uncorrelated

and correlated uncertainties on signal,

background (implemented as nuisance parameters

in the fit) described in CDF 6888

(fit.f is a profile likelihood approach.)
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DØ (www-d0.fnal.gov/~hobbs/limit_calc.html) has a web based menu

driven product which is interesting—similar to bayes.f, but pro-

duces limit (95% only) and posterior plot online:
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Concluding Observations

• With a flat cross section prior and a gamma prior for accep-

tance, the Bayesian upper limit scheme exhibits no known

defects. (Common defects are listed in CDF7117.)

• CDF7117 carries through all calculations analytically, which

results in very fast computations. (Convenient for extensive

coverage/sensitivity calculations.)

• Software is available for several combinations of priors.

• The gamma prior is more realistic than Gaussian for larger

uncertainties (for small uncertainties they are very similar).

• Luc Demortier’s correlated prior approach, described in the

next talk, improves robustness, and represents a trivial mod-

ification to the existing code.
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