Probing Flavor Siructure in Supersymmetric Theories

Shaaban Khalij

Ain Shams University, Cairo, Egypt

I. Initroduction

The recent results on the mixing-induced asymmetries of $B \rightarrow \varphi K$ and $B \rightarrow \dot{n} K$ are:

Belle

BaBar

- The direct CP violation in $\mathrm{B}^{0} \rightarrow \mathrm{~K}^{-} \pi^{+}$and $\mathrm{B}^{-} \rightarrow \mathrm{K}^{-} \pi^{0}$:

$$
\mathrm{A}^{\mathrm{Cp}} \mathrm{~K} . \pi+4=-0.113 \pm 0.019-4.2 \sigma \text { deviation mionizero }
$$

- These observations are considered as signals to new physics.
\lrcorner To accommodate the CP asymmetries of B decays, SUSY models with filavor non-universal soft breaking terms are feivored.

The squark mixings are classified as
i) and mixings given by and
ii) $L R$ and $R L$ mixings given by $\left(\sigma_{1}\right)$ and

- Constraints are more stringent on the LR (RL) mass insertions than the LL (RR) mass insertions.
- Mls between 1st \& 2nd generations are severely constrained more than Mls between 1st or 2nd \& 3rd generations.
- This gives the hope that SUSY contributions to the B-system.

II. Squark Mixing: LL versus LR

The EDM constraints severely restrict the EL and RR mass insertions:

- From Hg EDM: $\left.\left.\operatorname{Insi}_{\left(\rho^{-d}\right.}^{L R}\right)\right)_{22}<5.5 \times 10^{-6}$
- The SUSY contributions to the decay amplitudes $B \rightarrow$ φ K and $\mathrm{n}_{\mathrm{n}} \mathrm{K}$:

$$
\left.R_{\varphi}=-0.14 e^{-i 0.1}\left(\bar{\delta}^{d} L L\right)_{23}-127 e^{-i 0.08}\left(\bar{\sigma}^{d} L R\right)_{23}+(L \leftarrow \Gamma)\right),
$$

$$
R_{\text {R }}=-0.07 e^{-10.24}\left(\bar{o}^{d} L L_{23}-64\left(\bar{o}^{4} L_{R}\right)_{23}-(L \leftrightarrows R) .\right.
$$

$$
\begin{aligned}
& \left.\left.\approx 10^{-2}\left(\bar{\rho}_{L L}^{d}\right)_{23}\left(\rho_{R R}^{d}\right)_{32} \quad \text { (for neg. (} \sigma^{d} L R\right)_{22}\right) \text {. }
\end{aligned}
$$

- The CP asymmetries $S_{q K}$ and $S_{i j k}$ can not be accommodated

- Combining the effects of LL and RR MIs, we can fit the exp. data of SqK and SńK.
- However, the Hg EDM exceeds with many order of magnitudes its exp. Bound.

- Thus, SUSY models with dominant LR and RL may be the most favorite scenario.
\lrcorner However, it is difficult to arrange for $\left(\bar{\delta}_{L \mathrm{~d}}\right)_{23} \approx O\left(10^{-2}\right)$ whilst ($\left.\mathrm{O}^{\mathrm{L}} \mathrm{LR}\right)_{12}$ remains small:

From $\Delta \mathrm{M}_{\mathrm{K}}$ and ε と́/ع:

$$
\begin{aligned}
& \text { Re }\left(\bar{o}^{d}\right)_{12}<O\left(10^{-4}\right) \& \\
& \left.\operatorname{Ins}\left(O_{L R}^{d}\right)\right)_{12}<O\left(10^{-5}\right) .
\end{aligned}
$$

- The MJ (${ }^{\mathrm{d}}{ }_{\mathrm{LR}}^{\mathrm{ij}}$ are given by

$$
\left(\delta^{d} L R\right)_{i j} \approx\left[V^{d+} L \cdot\left(Y^{d} A^{d}\right) \cdot V^{d}\right]_{j j} \text {. }
$$

The factorizable A-term is an example of a specific texture to satisfy this hierarchy between $\left(\delta^{d}{ }_{L R}\right)_{12}$ and $\left(\delta^{\mathrm{d}} \mathrm{LR}\right)_{23}$.

- With intermediate/large $\tan \beta$, an effective \square can

For negligible ($\left.\bar{\delta}_{\mathrm{L}}{ }_{\mathrm{LP}}\right)_{23}$, we find

$$
\left(\delta_{\mathrm{LR}}^{d}\right)_{23 \mathrm{eff}} \approx\left(\delta_{\mathrm{LL}}^{d}\right)_{23} \frac{\mathrm{~m}_{b}}{\tilde{m}} \tan \beta
$$

- Thus if $\left(\bar{\delta}^{d}{ }_{L L}\right)_{23} \approx 10^{-2}$, we get $\left(\bar{\delta}^{d}{ }_{\text {LR }}\right)_{23 \text { eff }} \approx O\left(10^{-2}-10^{-3}\right)$.

These contributions are considered as LL (or RR).

- The main effect is still due to the Wilson coefficient C_{89} of the chromomagnetic operator.
- Although $\left(\rho^{-d L}\right)_{23} \approx 10^{-2}$ is not enough to explain the CP asymmetries of B-decays.
- Still it can induce an effective LR mixing that accounts for these results.

Suggested supersymirnetric flavor rnodel

\lrcorner As an example, we consider the following SUSY model:

$$
\begin{aligned}
& A^{\mathrm{u}}=\mathrm{A}^{\mathrm{d}}=\mathrm{A}_{0} \\
& M_{U}^{2}=M_{D}^{2}=m_{0}^{2} \\
& m_{H 1}{ }^{2}=m_{H 2}{ }^{2}=m_{0}^{2}
\end{aligned}
$$

- The masses of the squark doublets are given by

$$
\mathrm{M}_{\mathrm{Q}}^{2}=\quad m_{0}^{2}
$$

$\tan \beta=15, m_{0}=M_{1 / 2}=A_{0}=250 \rightarrow a \leq 5$

- The Yukawa textures play an important rule in the CP anid flavour supersynninetric results.
- Although, it is hierarchical texture, it lads to a good mixing between the second and third generations.
- The LL down MIs are given by:

With $a=5 \rightarrow\left(\text { 0'd }_{\text {LL }}\right)_{23} \sim 0.08 e^{0.41}$
\lrcorner Thus, one gets: ($\bar{\rho}^{-4}$, 1) $)_{23 \text { sifi }} \sim 0\left(10^{-2}-10^{-3}\right)$.

- The corresponding single LR MI is negligible due to the degeneracy of the A-terms.

Contribution to $S . .$. anirl $S . .$.

- Gluino exchanges give the dominant contribution to the CF asymmetries: $S_{\varphi K}$ and $S_{\eta K K}$.

$$
\begin{aligned}
& \mathrm{A}(\mathrm{~B} \rightarrow \varphi \mathrm{~K}) \sim-\mathrm{i} \frac{\mathrm{G}_{\mathrm{F}}}{\sqrt{2}} \mathrm{~m}_{\mathrm{B}}^{2} \mathrm{~F}_{+}^{\mathrm{B}-\mathrm{K}_{\mathrm{f}_{\varphi}} \mathrm{H}_{8 \mathrm{~g}}\left(\mathrm{C}_{8 \mathrm{~g}}-\widetilde{\mathrm{C}}_{8 \mathrm{~g}}\right.} \\
& \mathrm{A}(\mathrm{~B} \rightarrow-\operatorname{li}) \sim-\mathrm{i} \frac{\mathrm{G}_{\mathrm{F}}}{\sqrt{2}} \mathrm{~m}_{\mathrm{B}}^{2} \mathrm{~F}_{+}^{\mathrm{B} \rightarrow \mathrm{~K}_{\eta}} \mathrm{H}_{8 \mathrm{~g}}^{\prime}\left(\mathrm{C}_{8 \mathrm{~g}}-\widetilde{C}_{8 \varphi}\right)
\end{aligned}
$$

-1 o constraints on $S_{\text {fik }}$ leads to a lower bound on $\mathrm{a}: \mathrm{a} \geq 3$.
-With a large a, it is quite possible to account simultaneously for the experimental results S甲K and SńK .

Contribution to B—, K TI

-The direct $C P$ asymmetries of $B \rightarrow K \pi$ are given by:

$A \operatorname{AP}_{K-\pi^{2}} 02 \int_{T} \sin \sigma_{T} \sin \left(\theta_{P}+y\right)-2 \int_{E W} \sin \sigma_{E W} \sin \left(\theta_{P}-\theta_{E W}\right)$.

- The parameters $\theta_{P}, \theta_{E W}{ }^{c}, \theta_{E W}$ and $\bar{\sigma}_{T}, \bar{\rho}_{E W}, \bar{\rho}_{E W}{ }^{c}$ are the CP violating and CP conserving phases respectively.
- The parameter r_{T} measures the relative size of the tree and QCD penguin contributions.
- The parameter, $r_{E w}, r_{E w}{ }^{c}$ measure the relative size of the electroweak and QCD contributions.

$$
\text { r } e^{v p} p=\text { psm }\left(1+k e^{j p} p\right)^{\prime}
$$

$\int_{E W} e^{\sigma_{E W}} e^{\theta}{ }_{E W}=\int_{E M}{ }^{s m} e^{\bar{\sigma}} E W\left(1+1 e^{\theta^{\prime}}{ }^{2} W\right), r_{E M}{ }^{C} e^{\sigma_{E W}}{ }^{C}$

- k, I, m are given by $\left(m_{g}=m_{q}=500, M_{2}=200, \mu=400\right)$:
$k e^{\theta^{\prime}} \mathrm{p}=-0.0019 \tan \beta\left(\delta^{u}{ }_{L L}\right)_{32}-35.0\left(\delta^{d}{ }_{L R}\right)_{23}+0.061\left(\delta^{u}{ }_{L R}\right)_{32}$
$I e^{\theta^{\prime} \mathrm{Ew}}=0.0528 \tan \beta\left(\delta^{\mathrm{u}} \mathrm{LL}_{32}-2.78\left(\delta^{\mathrm{d}} \mathrm{LR}\right)_{23}+1.11\left(\delta^{\mathrm{H}} \mathrm{LR}\right)_{32}\right.$
$m e^{9}{ }^{9} W^{\mathrm{C}}=0.134 \tan \beta\left(\delta^{\mathrm{H}} \mathrm{LL}\right)_{32}+26.4\left(\delta^{d} \mathrm{LR}\right)_{23}+1.62\left(\delta^{\mathrm{J}} \mathrm{LR}\right)_{32^{-}}$ $a=5, m_{0}=M_{1 / 2}=A_{0}=250 \mathrm{GeV} \rightarrow\left(\delta \mathrm{L}_{\mathrm{LR}}\right)_{23} \sim 0.006 \times \mathrm{xe}^{-2.7 \pi}$.
Thus: $\mathrm{K} \sim 0.2, \mid \sim 0.009, m \sim 0.16 \rightarrow r_{E W} \sim 0.13, r^{\mathrm{C}} \mathrm{EW} \sim 0.012$,

$$
\mathrm{r}_{\mathrm{T}} \sim 0.16 \rightarrow \mathrm{~A}_{\mathrm{K}^{-} \mathrm{T}^{+}} \sim-0.113 \text { and } \mathrm{A}^{C P} \mathrm{~K}^{-} \mathrm{T}^{0}<\mathrm{A}^{\mathrm{CP}} \mathrm{~K}_{\mathrm{K}^{-} \mathrm{T}^{+}}
$$

Conclusions

\lrcorner We studied the possibility of probing SUSY flavor stiructure using K, B CP asymmetries constraints \& EDM.
U One possibilility: large LR and/or RL sector.

- Second possibility: large LL combined with a very small RR and also intermediate or large $\tan \beta$.
- Large LR requires a specific pattern for A terms.
- Large LL seems quite natural and can be obtained by a nonuniversality between the squark masses.
- As an example, a SUSY model with a non-universal left squark masses is considered.
- one gets effective $\left(\delta^{d}{ }_{L R}\right)_{23}$ that leads to a significant SUSY contributions to the CP asymmetries of B decays.

