Who needs SCET in $B \to X \ell^+ \ell^-$?

Zoltan Ligeti

CERN, Nov. 9, 2005

Introduction

Calculations and measurements of $B \to X_s \ell^+ \ell^-$

 Small *q*² region in presence of *q*² and *m_X* cuts Ingredients of the calculation Results, universality of *ε*, implications

Details: K. Lee, ZL, I. Stewart, F. Tackmann, hep-ph/0511nnn

Who needs SCET in $B \to X \ell^+ \ell^-$?

Zoltan Ligeti

CERN, Nov. 9, 2005

Introduction

Calculations and measurements of $B \to X_s \ell^+ \ell^-$

 Small *q*² region in presence of *q*² and *m_X* cuts Ingredients of the calculation Results, universality of *ε*, implications

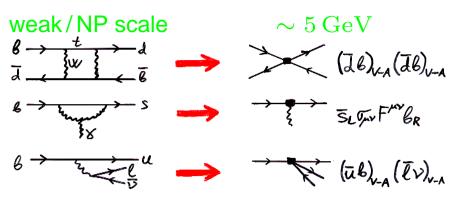
Details: K. Lee, ZL, I. Stewart, F. Tackmann, hep-ph/0511nnn

(Michelangelo said: "Avoid just telling us about your last paper")

Questions for flavor physics

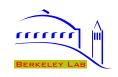
• At scale m_b , $\mathcal{O}(100)$ higher dimensional flavor changing operators

Depend on a few param's in SM \Rightarrow intricate correlations between s, c, b, t decays



E.g.: $\frac{\Delta m_d}{\Delta m_s}$, $\frac{b \to d\gamma}{b \to s\gamma}$, $\frac{b \to d\ell^+ \ell^-}{b \to s\ell^+ \ell^-}$ all $\propto \left| \frac{V_{td}}{V_{ts}} \right|$ in SM, but test different S.D. physics

- Question: does the SM (i.e., integrating out virtual W, Z, and quarks in tree and loop diagrams) explain all flavor changing interactions? Right coeff's? Right op's?
- $\mathcal{B}(B \to X_s \gamma) = (3.4 \pm 0.3) \times 10^{-4}$ great triumph; major effort toward NNLO Expected error $\lesssim 5\%$ (4-loop running, 3-loop matching and matrix elements)
- $\mathcal{B}(B \to X_s \ell^+ \ell^-) = (4.5 \pm 1.0) \times 10^{-6}$ also agrees with SM; NNLO calculation practically completed, theory error $\sim 10\%$



Status of $B \to X_s \ell^+ \ell^-$

• NNLO $b \rightarrow s\ell^+\ell^-$ perturbative calculation [Bobeth, Misiak, Urban, Gambino, Gorbahn, Haisch, Asatryan, Asatrian, Greub, 3 Walker, Ghinculov, Hurth, Isidori, Yao, etc.] Nonperturbative corrections to rate 2 [Falk, Luke, Savage, Ali, Hiller, Handoko, Morozumi, Buchalla, Isidori, Rev] Rate depends on (mostly) 1 $O_7 = m_b \, \bar{s} \sigma_{\mu\nu} e F^{\mu\nu} P_R b$ $O_9 = e^2 (\bar{s} \gamma_\mu P_L b) (\bar{\ell} \gamma^\mu \ell),$ 0 $O_{10} = e^2 (\bar{s}\gamma_\mu P_L b) (\bar{\ell}\gamma^\mu \gamma_5 \ell)$ Theory most precise for $1 \,\mathrm{GeV}^2 < q^2 < 6 \,\mathrm{GeV}^2$ Experiments use additional cut, $m_{X_s} \lesssim 2 \,\mathrm{GeV}$

 $(2~{
m GeV}$ [Belle, hep-ex/0503044]; $1.8~{
m GeV}$ [Babar, hep-ex/0404006])



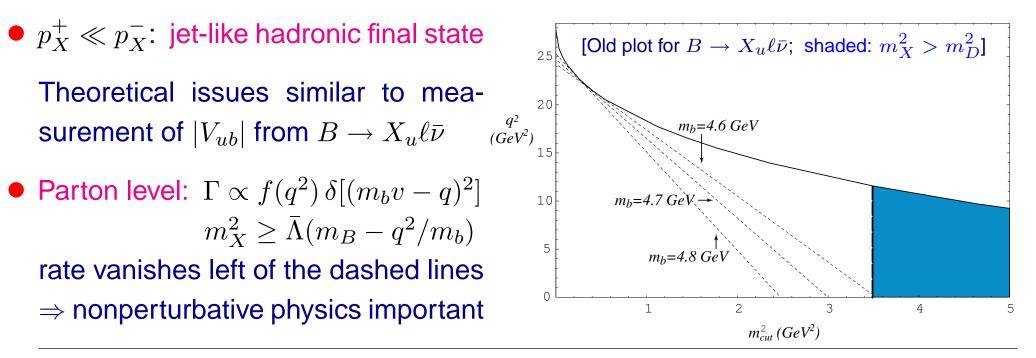
$B ightarrow X_s \ell^+ \ell^-$ kinematics

There are only two kinematic variables symmetric in p_{ℓ^+} and p_{ℓ^-}

$$2m_B E_X = m_B^2 + m_X^2 - q^2$$

 $m_X^2 \ll m_B^2 \& m_B^2 - q^2 \ll m_B^2 \Rightarrow E_X = \mathcal{O}(m_B) \& E_X^2 \gg m_X^2 \Rightarrow p_X$ near light-cone

 $p_X^+ = n \cdot p_X = \mathcal{O}(\Lambda_{\text{QCD}}) \qquad p_X^- = \bar{n} \cdot p_X = \mathcal{O}(m_B) \qquad n, \bar{n} = (1, \pm \vec{p}_X / |\vec{p}_X|)$

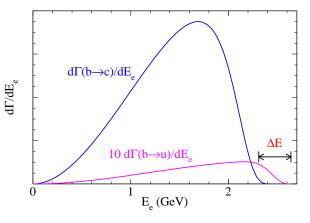


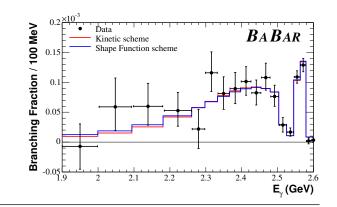
Reminder: inclusive decays

- $|V_{cb}|$: hadronic param's (m_b , Λ , $\lambda_{1,2}$, etc.) fitted from ~90 observables; tests theory $\Rightarrow |V_{cb}| = (41.5 \pm 0.7) \times 10^{-3}$, $m_b^{1S} = 4.68 \pm 0.03 \,\text{GeV}$, $\overline{m}_c(m_c) = 1.22 \pm 0.06 \,\text{GeV}$
- $|V_{ub}|$: rate known to ~ 5%; phase space cuts to remove $B \rightarrow X_c \ell \bar{\nu}$ (essentially all but q^2) introduce $\mathcal{O}(1)$ dependence on nonperturbative *b* quark distribution function

Hadronic parameters become functions, not constants Leading order: universal and related to $B \to X_s \gamma$; but several new unknown functions at $\mathcal{O}(\Lambda_{\rm QCD}/m_b)$

• $\mathcal{B}(B \to X_s \gamma) = (3.4 \pm 0.3) \times 10^{-4}$ — triumph for SM Major effort toward NNLO: pert. theory error $\lesssim 5\%$ Crucial to measure with as low E_{γ}^{cut} as possible





Perturbation theory for amplitude or rate?

- Usual power counting: expand $\langle s\ell^+\ell^- | \mathcal{H} | b \rangle$ in α_s , treating $\alpha_s \ln(m_W/m_b) = \mathcal{O}(1)$
 - This is OK in local OPE region (e.g., rate or q^2 spectrum) where nonperturbative corrections ($\lambda_{1,2}$, etc.) are small and can be included at the end
- Shape function region: only the rate is calculable, $\Gamma \sim \text{Im} \langle B | T \{ O_i^{\dagger}(x) O_j(0) \} | B \rangle$

 $C_9(m_b) \sim \ln(m_W/m_b) \sim 1/\alpha_s$ "enhancement", but $|C_9(m_b)| \sim C_{10}$

- Need to take it seriously to cancel scheme- and scale-dependence in running
- Do not want power counting to imply that $\langle B|O_9^{\dagger}O_9|B\rangle$ at $\mathcal{O}(\alpha_s^2)$ is of same order as $\langle B|O_{10}^{\dagger}O_{10}|B\rangle$ at tree level
- Matching onto SCET, can separate μ -dependence in matrix element that cancels that in running from $\mathcal{O}(m_W)$ to $\mathcal{O}(m_b)$, and dependence on scales $\sqrt{m_b \Lambda_{\rm QCD}}$ and $\mu_{\rm hadr} \sim 1 \,{\rm GeV}$ can work to different orders

Matching and running below m_b

- Match $\mathcal{H}_w(\mu_h)$ on SCET at $\mu_h \sim m_b$
- Run down to $\mu_i \sim \sqrt{m_b \Lambda_{\rm QCD}}$

$$d^{3}\Gamma^{(0)} = H \int dk J(k) f^{(0)}(k)$$

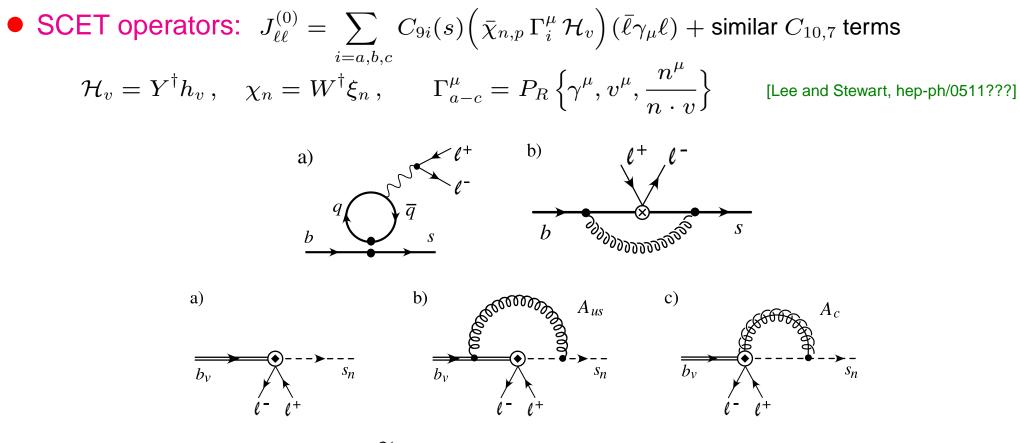
H and J perturbative, $f^{(0)}$ nonperturbative

• Take $f^{(0)}(k)$ from $B \to X_s \gamma$, or run model from μ_0 to μ_i [Bosch, Lange, Neubert, Paz] (recall: Λ_{QCD}/m_b suppressed shape functions are non-universal)

$$f^{(0)}(\hat{\omega},\mu_i) = \frac{e^{V_S(\mu_i,\mu_0)}}{\Gamma(1+\eta)} \left(\frac{\hat{\omega}}{\mu_0}\right)^{\eta} \int_0^1 \mathrm{d}t \, f^{(0)}\Big[\hat{\omega}(1-t^{1/\eta}),\mu_0\Big] \qquad \eta = \frac{16}{27} \,\ln\frac{\alpha_s(\mu_0)}{\alpha_s(\mu_i)}$$

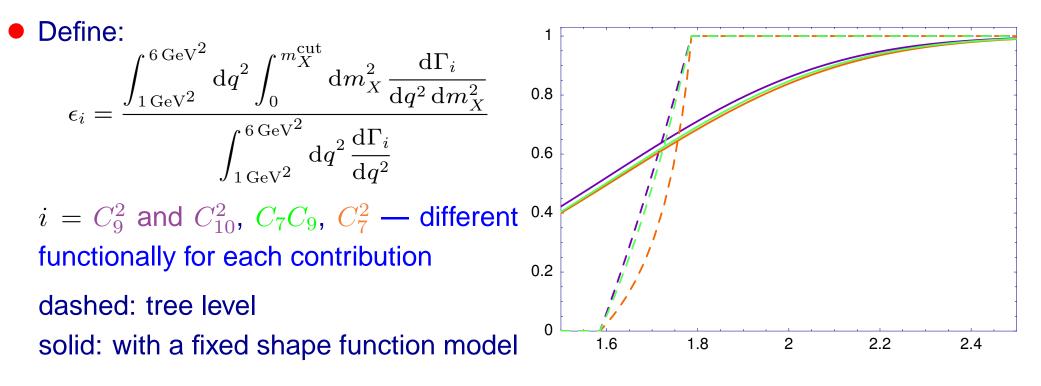
.

Matching onto SCET



• Wilson Coefficients: $C_{9a} = \widetilde{C}_{9}^{\text{eff}}[1 + \mathcal{O}(\alpha_s)]$ $C_{9b,c} = \mathcal{O}(\alpha_s)$ Some parts of the "usual" NLL $\mathcal{O}(\alpha_s)$ corrections included in $\widetilde{C}_{9}^{\text{eff}}$ [Misiak, Buras, Munz] now contribute to the jet function, J, some others to the shape function, $f^{(0)}(k)$

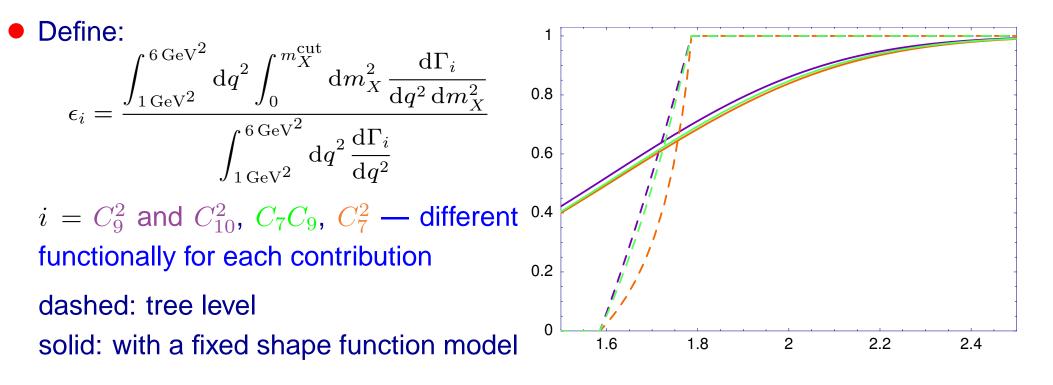
Effects of m_X cut at lowest order



• ϵ determines fraction of rate that is measured in presence of m_X cut I.e., a 30% deviation at $m_X^{\text{cut}} = 1.8 \,\text{GeV}$ may be hadronic physics, not new physics

[Experimental papers use ACCMM model to describe $m_X > 1.1 \, {
m GeV}$ region]

Effects of m_X cut at lowest order



- Strong m_X^{cut} dependence: important to raise it above $\sim 2.2 \,\text{GeV}$ Once $1 - \epsilon$ is sizable, so will be its uncertainty
- Approximate universality of ϵ_i : because shape function varies on scale $p_X^+/\Lambda_{\rm QCD}$, while $\Gamma_i^{\rm parton}$ varies on scale $p_X^+/m_b \Rightarrow \epsilon \approx \epsilon_i$

• Modest q^2 -dependence of C_9 for $1 \,\mathrm{GeV}^2 < q^2 < 6 \,\mathrm{GeV}^2$ can be included trivially

Shape function uncertainties estimated using $B \rightarrow X_s \gamma$ spectrum

Since largest effect of NNLO is to reduce μ -dependence, while not significantly affecting q^2 distribution, ϵ at NNLO is approximately the same as at NLO

- If increasing m_X^{cut} above $\sim 2.2 \,\text{GeV}$ is very hard experimentally, can keep it below m_D and normalize to $B \to X_u \ell \bar{\nu}$ rate with same cuts to minimize uncertainties
- Sensitivity to NP survives, must take hadronic effects into account correctly

- To achieve theoretical limits in sensitivity to NP in $B \to X \ell^+ \ell^-$, small q^2 region is important
- Experimentally used m_X cuts make observed rate sensitive to the shape function
- SF region: expansion for rate, not the amplitude, reorganize perturbation theory
- Approximate universality of ϵ_i for different contributions
- Using $B \to X_s \gamma$ and/or $B \to X_u \ell \bar{\nu}$ data, sensitivity to NP not reduced

Who needs SCET in $B \to X \ell^+ \ell^-$?

One-page introduction to SCET

• Effective theory for processes involving energetic hadrons, $E \gg \Lambda$

[Bauer, Fleming, Luke, Pirjol, Stewart, + ...]

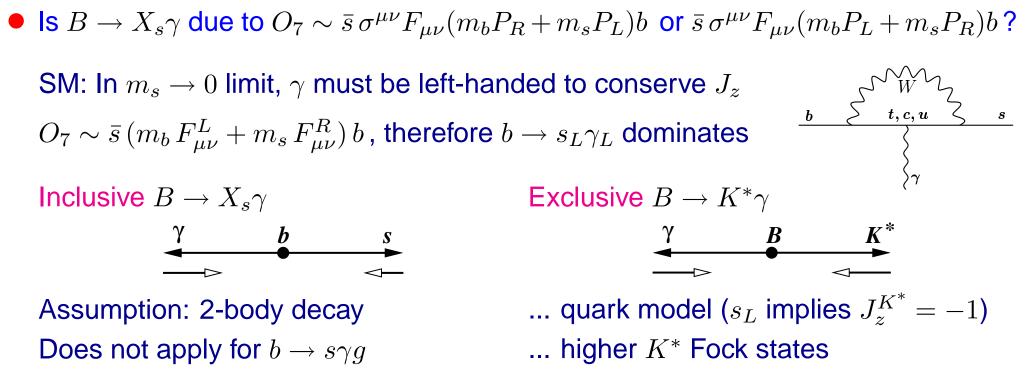
Introduce distinct fields for relevant degrees of freedom, power counting in λ

modes	fields	$p = (+, -, \bot)$	p^2	SCET _I : $\lambda = \sqrt{\Lambda/E}$ — jets $(m \sim \Lambda E)$
collinear	$\xi_{n,p}, A^{\mu}_{n,q}$	$E(\lambda^2,1,\lambda)$	$H^{-}_{\lambda} \lambda^{-}$	
soft	q_q, A^μ_s	$E(\lambda,\lambda,\lambda)$	$E^2\lambda^2$	SCET _{II} : $\lambda = \Lambda / E$ — hadrons ($m \sim \Lambda$)
usoft	q_{us}, A^{μ}_{us}	$E(\lambda^2,\lambda^2,\lambda^2)$	$E^2\lambda^4$	$\text{Match QCD} \rightarrow \text{SCET}_{\mathrm{I}} \rightarrow \text{SCET}_{\mathrm{II}}$

• Can decouple ultrasoft gluons from collinear Lagrangian at leading order in λ $\xi_{n,p} = Y_n \xi_{n,p}^{(0)}$ $A_{n,q} = Y_n A_{n,q}^{(0)} Y_n^{\dagger}$ $Y_n = P \exp \left[ig \int_{-\infty}^x ds \, n \cdot A_{us}(ns) \right]$ Nonperturbative usoft effects made explicit through factors of Y_n in operators New symmetries: collinear / soft gauge invariance

• Simplified / new ($B
ightarrow D\pi, \pi \ell ar{
u}$) proofs of factorization theorems [Baue

Photon polarization in $B o X_s \gamma$

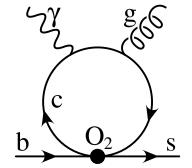


• One measurement so far; had been expected to give $S_{K^*\gamma} = -2 \left(\frac{m_s}{m_b} \right) \sin 2\beta$ [Atwood, Gronau, Soni] $\frac{\Gamma[\overline{B}^0(t) \to K^*\gamma] - \Gamma[B^0(t) \to K^*\gamma]}{\Gamma[\overline{B}^0(t) \to K^*\gamma] + \Gamma[B^0(t) \to K^*\gamma]} = S_{K^*\gamma} \sin(\Delta m t) - C_{K^*\gamma} \cos(\Delta m t)$

• What is the SM prediction? What limits the sensitivity to new physics?

Right-handed photons in the SM

Dominant source of "wrong-helicity" photons in the SM is O_2 [Grinstein, Grossman, ZL, Pirjol] Equal $b \to s\gamma_L$, $s\gamma_R$ rates at $\mathcal{O}(\alpha_s)$; calculated to $\mathcal{O}(\alpha_s^2\beta_0)$ Inclusively only rates are calculable: $\Gamma_{22}^{(brem)}/\Gamma_0 \simeq 0.025$ Suggests: $A(b \rightarrow s\gamma_R)/A(b \rightarrow s\gamma_L) \sim \sqrt{0.025/2} = 0.11$



Exclusive $B \to K^* \gamma$: factorizable part contains an operator that could contribute at leading order in $\Lambda_{\rm QCD}/m_b$, but its $B \to K^* \gamma$ matrix element vanishes

Subleading order: several contributions to $\overline{B}{}^0 \to \overline{K}{}^{0*}\gamma_R$, no complete study yet

We estimate:

$$\frac{A(\overline{B}{}^0 \to \overline{K}{}^{0*} \gamma_R)}{A(\overline{B}{}^0 \to \overline{K}{}^{0*} \gamma_L)} = \mathcal{O}\left(\frac{C_2}{3C_7} \frac{\Lambda_{\rm QCD}}{m_b}\right) \sim 0.1$$

• Data: $S_{K^*\gamma} = -0.13 \pm 0.32$ — both the measurement and the theory can progress

