andries van der schaaf, Zürich

1 Organization (mainly question marks)¹

- How do we arrive at a real working group?
- What will be studied?
- How should the work be organized?
- How should the group communicate?

¹produced late at night, so please have mercy

WG3: LFV, EDM's, g-2

1.1 How do we arrive at a real working group?

- Choose some "experts" for the various research areas, presently:

Yannis Semertzidis EDM's, g-2

Martti Raidal LFV theory

A.v.d.S. LFV experiment

More may be needed.

- These experts try to activate workers in their area in- and outside the list of people that signed up this week.
- What would be an ideal size of such group?

andries van der schaaf, Zürich

1.2 What will be studied?

- Do we want to include the neutrino sector, at least in the theory part?
- I'd like to include CC flavour universality. This can be tested in W, K, π and τ decay and was addressed in two theoretical presentations.
- CP violation in the charged lepton sector ?
- What else?

andries van der schaaf, Zürich

1.3 How should the work be organized?

- Do we start two weeks before each CERN meeting or do we want more?
- Should subWG's meet on their own and send representatives to CERN?
- Theory and experiment should stay together.

andries van der schaaf, Zürich

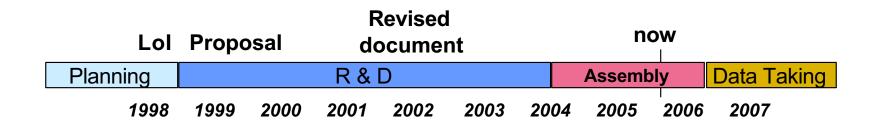
1.4 How should the group communicate?

- These meetings would probably use VRVS.
- These meetings could be of more general interest, i.e. for NUFACT.
- Should we arrange for a website open to the full workshop where documents can be loaded?

andries van der schaaf, Zürich

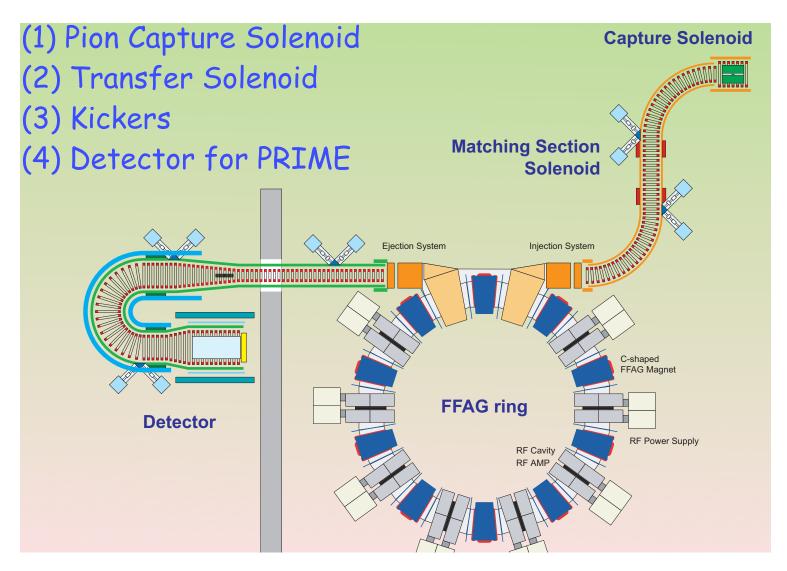
What happened in WG3?

- LFV theory will be discussed by Martti Raidal.
- Rare muon decays
- Rare tau decays
- $\mu(e) \tau$ conversion at high energy
- Neutron EDM
- Deuteron EDM
- Muon g-2 and EDM
- CP in orthopositronium decay
- Lepton universality
- Michel parameters in μ decay


Baldini, Mori, Kuno Banerjee Kuno, Marchiori laydjiev, Kirch **Semertzidis Onderwater, Colangelo Felcini** Bryman, Pich

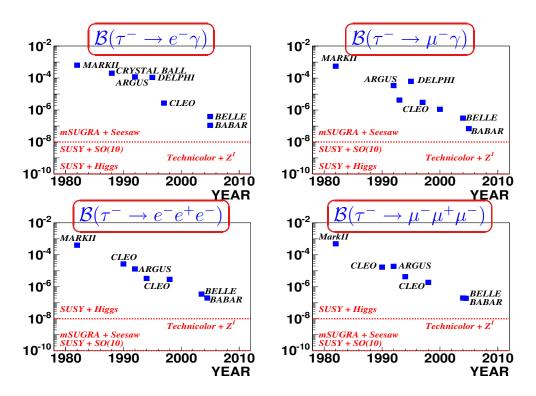
Gyle

andries van der schaaf, Zürich


2.1 Rare muon decays

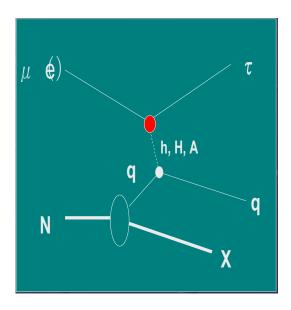
- MEG will improve $\mu \to e \gamma$ sensitivity by two orders of magnitude
- The experiment is limited by accidental coincidences and takes only a fraction of the PSI surface muon beam

- μe conversion may be the only process for which dramatic improvements in sensitivity can be achieved. After the cancellation of MECO the only remaining project is PRISM/PRIME which aims at a sensitivity of 10^{-18} .

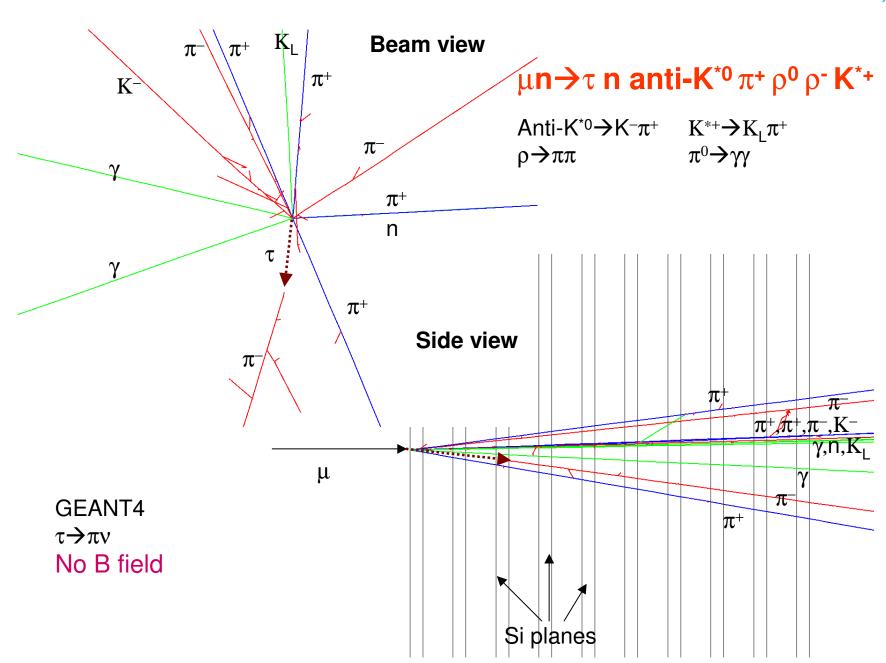


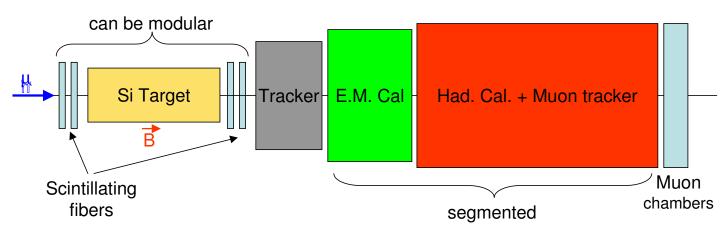
PRISM/PRIME

2.2 Rare tau decays



- Further progress at the B factories not only depends on integrated luminosity but also on improvements in background suppression
- At the LHC $au o l \gamma$ seems hopeless.
- au o 3l may be feasible but would require a special trigger

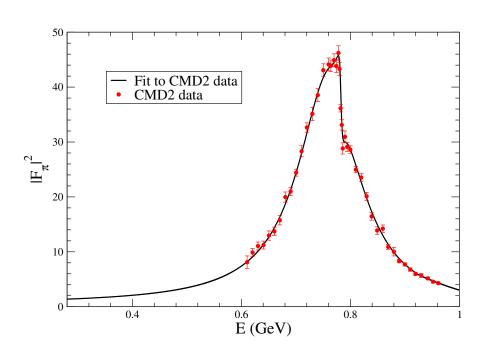

2.3 $\mu(e) - \tau$ conversion at high energy


- cross sections are assumed as large as allowed by present au limits.

A conceptual design

NOT TO SCALE!

- To gain four orders of magnitude compared to the present limits from au decay 10^{20} muons are needed.
- Unclear whether the detection system can stand the resulting rate in particular since these beams have low duty cycle.


2.4 Neutron/Deuteron EDM

- The ILL experiment reached a prelimary limit of $d_n = -0.31 \pm 1.54 \times 10^{-26}$ e·cm.
- A new cryogenic version of the experiment may improve the sensitivity by 1-2 orders of magnitude in the next four years.
- The PSI experiment hopes to reach 10^{-27} e·cm in a first stage starting in 2008.
- A 10⁻²⁹ e⋅cm deuteron EDM experiment is preparing a LOI. Since deuterons have electric charge the experiment can make use of a storage ring.

2.5 Muon g-2

- The BNL experiment is still statistics limited
- There is good hope that the dominant uncertainty in the SM value originating in the uncertainty of the e^+e^- cross section data in the resonant region around 800 MeV can be reduced by a factor 2.

Reduced statistical error in the evaluation of the integral

P	$\chi^2/\text{d.o.f.}$	$a_{ ho}$	a_{2M_K}
0	84.0/83	420.0 ± 2.1	489.5 ± 2.2
1	75.9/82	$\textbf{423.4} \pm \textbf{2.4}$	493.7 ± 2.5
2	75.8/81	423.1 ± 2.6	$\textbf{493.2} \pm \textbf{2.8}$
3	73.7/80	422.2 ± 2.7	$\textbf{492.2} \pm \textbf{2.9}$

GC SIGHAD (04)

Cf. Jegerlehner (03) (using the trapezoidal rule):

$$a_{\rho} = 429.02 \pm 4.95$$
 (stat.)

Difference in central value mostly due to FS radiation, not included in our analysis

andries van der schaaf, Zürich

no conclusions...

Continuation by Martti Raidal