

Flavour in the era of the LHC a Workshop on the interplay of flavour and collider physics

First meeting: CERN, November 7-10 2005

Report from Working Group 2 B/D/K Decays

• BSM signatures in B/K/D physics, and their complementarity with the high-pT LHC discovery potential Flavour phenomena in the decays of SUSY particles slenton spectroscopy and family stru

Conveners

Gerhard Buchalla, Luca Silvestrini (theory) Takeshi Komatsubara, Franz Muheim (experiment)

Local Organizing Committee

A. Ceccucci (CERN, Geneva) D. Denegri (Saclay, Cif, sur Ivette) J. Ellis (CERN, Geneva) T. Nakada (EPFL, Lausanne) R. Fleischer (CERN, Geneva) G. Giudice (CERN, Geneva)

G. Polesello (INFN, Pavia) M. Smizanska (Lancaster U

http://mlm.home.cern.ch/mlm/FlavLHC.html

International Advisory Committee

- A. Ali (DESY, Hamburg) A. Buras (TUM, Munich) P. Cooper (FNAL, Batavia) P. Franzini (LNF, Frascati) M. Giorgi (Universita' di Pisa) K. Hagiwara (KEK, <u>Tsukuba</u>) S. Jin (IHEP, Beijing) L. Littenberg (BNL, Brookhaven) P. Zerwas (DESY, Hamburg)
- G. Martinelli (La Sapienza, Roma) A. Masiero (Universita' di Padova) H. Muravama (UC and LBNL, Berkeley) A. Sanda (Nagoya University) Y. Semertzidis (BNL, Brookhaven) S. Stone (Syracuse University) M. Yamauchi (KEK, Tsukuba)

LHC Flavour workshop, CERN, 7-10 Nov 2005

GB, TK, FM, LS

Outline

- Scope of WG2
- Benchmark processes
- Tasks
- Experimental Summary

Flavour Physics 2005-2015

- High energy collider \iff BSM \implies Precision flavour studies
 - New particle masses flavour couplings
- Precision flavour studies
 - Rare decays \leftrightarrow CP violation
 - B/D/K experiments beyond LHC
 - Super B factories
 - Fixed target D/K at PS/SPS or JPARC
 - Flavour mixing: quarks \leftrightarrow leptons
 - Hadronic uncertainties

Benchmark processes

- $b \rightarrow s\gamma$, $b \rightarrow d\gamma$, $b \rightarrow sII$, $b \rightarrow svv$
- $B_{s,d} \rightarrow \mu + \mu -$
- B $\rightarrow \tau + \nu$, D $\tau + \nu$
- UT angles
 - $Bd \rightarrow \psi K_S$, DK, $\pi\pi$, $\rho\rho$
 - $Bs \rightarrow DsK$, KK
- B_s-B_sbar mixing
- $b \rightarrow s$ hadronic transitions
 - $Bd \rightarrow phiK_{S}, ...$
- $K \rightarrow \pi \nu \nu$, $K_L \rightarrow \pi^0 II$
- D⁰-D⁰bar mixing, D rare decays
- → Need info on all possible flavour transitions
 - b \rightarrow s b \rightarrow d s \rightarrow d
- Theoretically clean observables

th. error $\leq 10\%$ $\bigcirc = \exp. \text{ error } \leq 10\%$ $\bigcirc = \exp. \text{ error } \sim 30\%$		F	Table from		
		$b \rightarrow s ~(\sim \lambda^2)$	$b \rightarrow d (\sim \lambda^3)$	$s \rightarrow d (\sim \lambda^5)$	G. Isidori
RE	$\Delta F=2$ box	ΔM_{Bs} $A_{CP}(B_s \rightarrow \psi \phi)$	$ \begin{array}{c} (\Delta M_{Bd}) \\ (A_{CP}(B_d \rightarrow \psi K)) \end{array} $	$\Delta M_{K}, \epsilon_{K}$	
ELECTROWEAK STRUCTURE	$\Delta F=1$ 4-quark box	(B _d →φK)B _d →Kπ,	$B_d \rightarrow \pi\pi, B_d \rightarrow \rho\pi,$	ε'/ε, K→3π,	
	gluon penguin	$ \begin{array}{c} B_{d} \rightarrow X_{s} \gamma & B_{d} \rightarrow \phi K \\ B_{d} \rightarrow K \pi, \dots \end{array} $	$B_d \rightarrow X_d \gamma, B_d \rightarrow \pi \pi,$	$\epsilon'/\epsilon, K_L \rightarrow \pi^0 l^* l^-, \dots$	
	γ penguin	$\underbrace{\mathbf{B}_{d} \rightarrow \mathbf{X}_{s} l^{t} l}_{\mathbf{B}_{d} \rightarrow \mathbf{K} \pi, \dots} \underbrace{\mathbf{B}_{d} \rightarrow \mathbf{K} \pi, \dots}_{\mathbf{K} \pi, \dots}$	$\begin{split} & \mathbf{B}_{\mathrm{d}} \boldsymbol{\rightarrow} \mathbf{X}_{\mathrm{d}} l^{\dagger} l^{\dagger} l^{\dagger} \mathbf{B}_{\mathrm{d}} \boldsymbol{\rightarrow} \mathbf{X}_{\mathrm{d}} \boldsymbol{\gamma} \\ & \mathbf{B}_{\mathrm{d}} \boldsymbol{\rightarrow} \pi \pi, \dots \end{split}$	$\epsilon'/\epsilon, \mathbf{K}_{L} \rightarrow \pi^{0} l^{\dagger} l^{-}, \dots$	
	Z ⁰ penguin	$\underbrace{\mathbf{B}_{d} \rightarrow \mathbf{X}_{s} \mathbf{l}^{T}}_{\mathbf{B}_{d} \rightarrow \mathbf{k} \mathbf{K}, \mathbf{B}_{d} \rightarrow \mathbf{K} \pi, \dots}$		$\begin{split} & \epsilon'\!/\epsilon, K_{\!L} \!$	
	H ⁰ penguin	B _s →μμ	$B_d \rightarrow \mu \mu$	K _{L,S} →μμ	

Pattern of the deviation from

the SM

Table from M. Hazumi

Unitarity triangle

Rare decays

	Bd- unitarity	е	D m(Bs)	B->fKs	B->Msg indirect CP	b->sg direct CP
mSUGRA	_	-	-	_	-	+
SU(5)SUSY GUT + nr	_	+	+	_	+	-
(degenerate) SU(5)SUSY						
GUT + n R (non-degenerate)	-	-	+	++	++	+
U(2) Flavor symmetry	+	+	+	++	++	++

++: Large, +: sizable, -: sma

"DNA Identification" of New Physics from Flavor Structure

T.Goto, Y.Okada, Y.Shimizu, T.Shindou, M.Tanaka (2002, 2004) + SuperKEKB LoI

List of Tasks

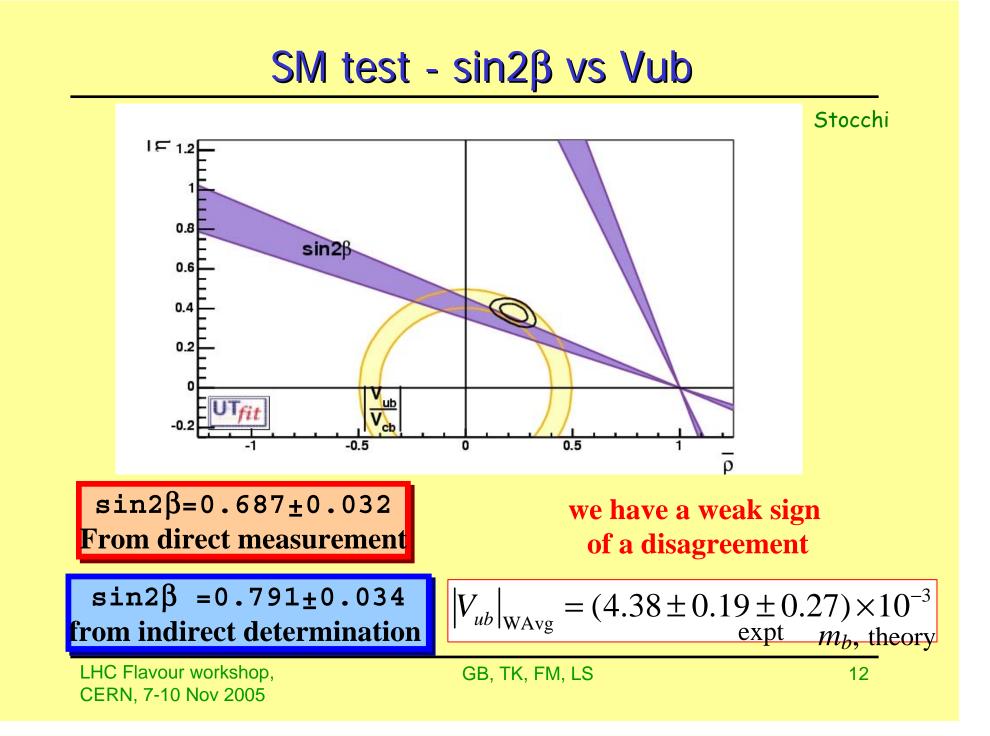
- Study complementarity between collider and flavour physics
 - SUSY benchmark (e.g. SPS1a) in collider physics
 - Add flavour violation (\rightarrow squark decays)
 - Compute effective Hamiltonian (OPE)
 - Evaluate flavour observables, check consistency with data
- Beyond SUSY
 - NP model independent studies, MFV
- → Common session WG1 & WG2
- Hadronic Uncertainties
- dedicated session at next meeting
- Experimental Studies
 - Sensitivities LHC, (super-)B & tau/charm factories, fixed target
 - Triggers, Backgrounds,

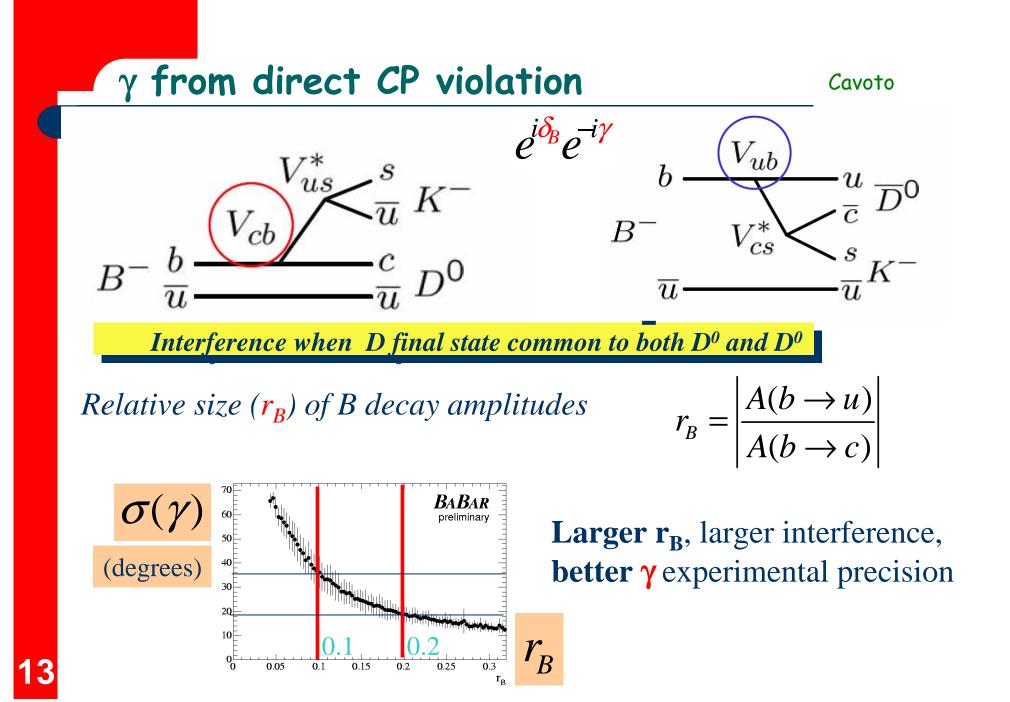
Future tasks:

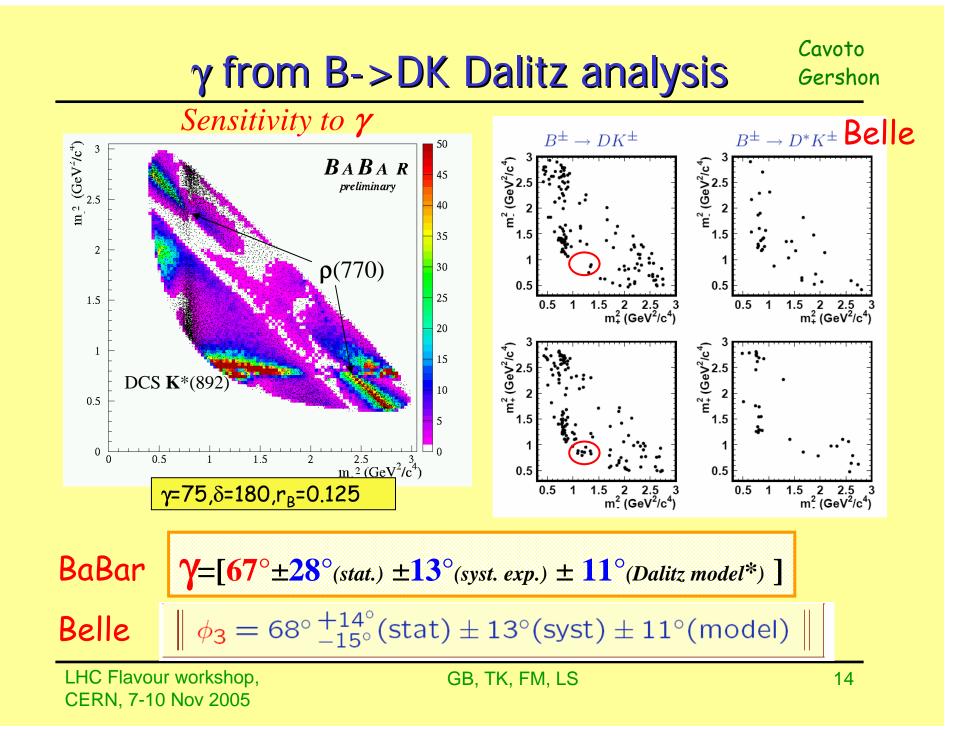
- Most MC analyses at the LHC are done within MSUGRA only: mostly flavour diagonal, squark mass degeneracy
- Experimental issue of flavour tagging
- Necessary update to be done: $b \rightarrow s\ell^+\ell^-$, $A_{CP}(b \rightarrow s\gamma)$, $A_{FB}(b \rightarrow s\ell^+\ell^-)$,...
- Extension of the Les Houches Accord for flavour-nondiagonal quantities (→ Peter Skands et al.)
- Need of program sets to connect collider with low-energy data (program sets existing on each side!)

Tobias Hurth, Flavour in the Era of the LHC, November 2005

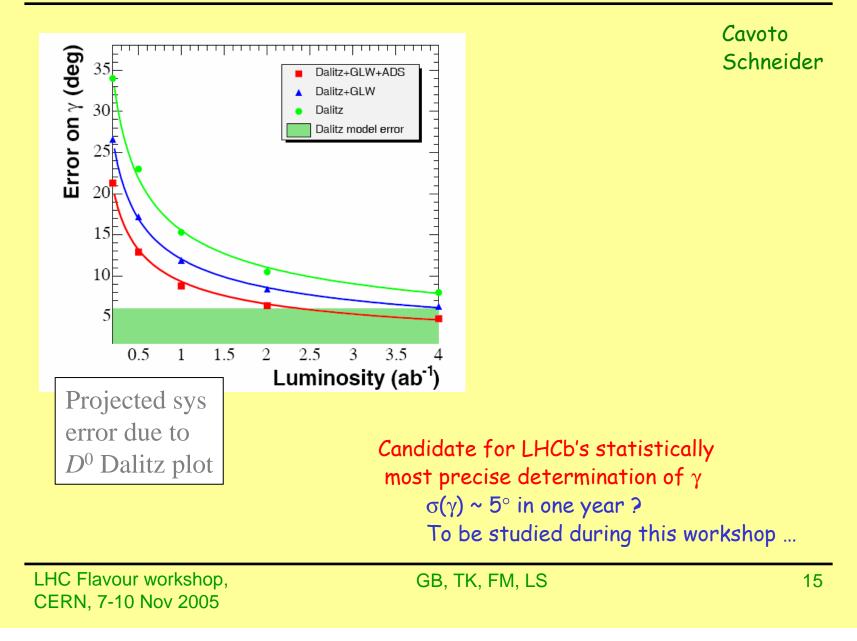
(Experimental) Summary

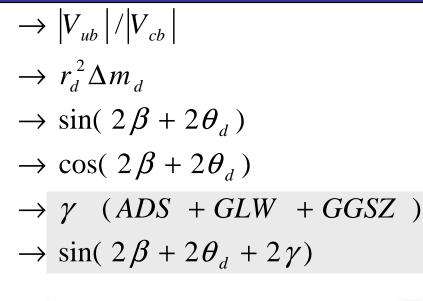

- Gamma at tree level (includes Vub)
 - B-> DK Dalitz Babar/Cavoto, Belle/Gershon, LHCb/Schneider
 - $B_s \rightarrow D_s K$, $B_s \rightarrow K + K - LHCb/Schneider$
- Sin2 β with penguins
 - Belle/Gershon
 - Babar/Pierini
 - Super-B/Hazumi
 - Many theory talks
- Charm
 - D⁰-D⁰bar mixing, D rare decays, decay constants, comparison with Lattice QCD/ Stone
- Kaons
 - $K^+ \rightarrow \pi^+ \nu \nu$ NA48/Ruggiero, Littenberg
 - $K_L \rightarrow \pi^0 v v E391a/KEK$ Komatsubara, Littenberg
 - Theory talks / Buras, Scimemi

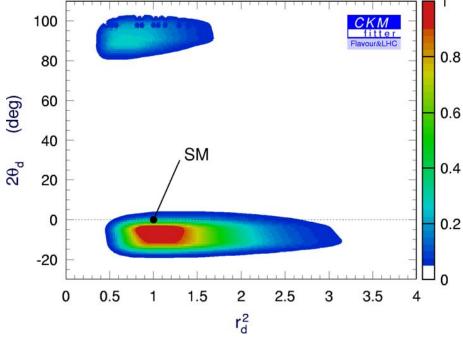

(Experimental) Summary


- Radiative Penguins b-> $s\gamma$, b-> $d\gamma$, B->tau nu
 - Belle/Iijima
 - BaBar/Playfer
- Electroweak Penguins B(s) -> || K(*), || s
 - Belle/Hazumi/Iijima
 - Babar/Playfer
 - LHCb/Koppenburg
 - Theory/Ligeti
- Bs->mumu
 - LHCb/Schneider
 - CDF/Oldeman
 - C0/Ay
 - Atlas/Nikitine
 - CMS/Speer

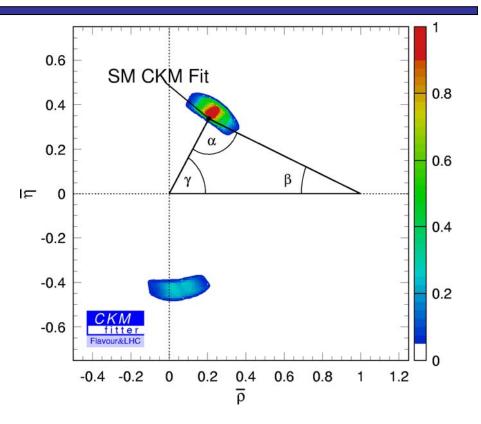
(Experimental) Summary


- Bs mixing
 - Mass difference $\Delta m_s,\,\, weak\,\, mixing\,\, phase\,\, \varphi_s$ lifetime difference $\Delta \Gamma_s/\Gamma_s,\,$
 - CDF/Oldeman
 - D0/Ay
 - LHCb/Fernandez
- Unitarity fits
 - CKMfitter/Robert
 - UTfit/Stocchi





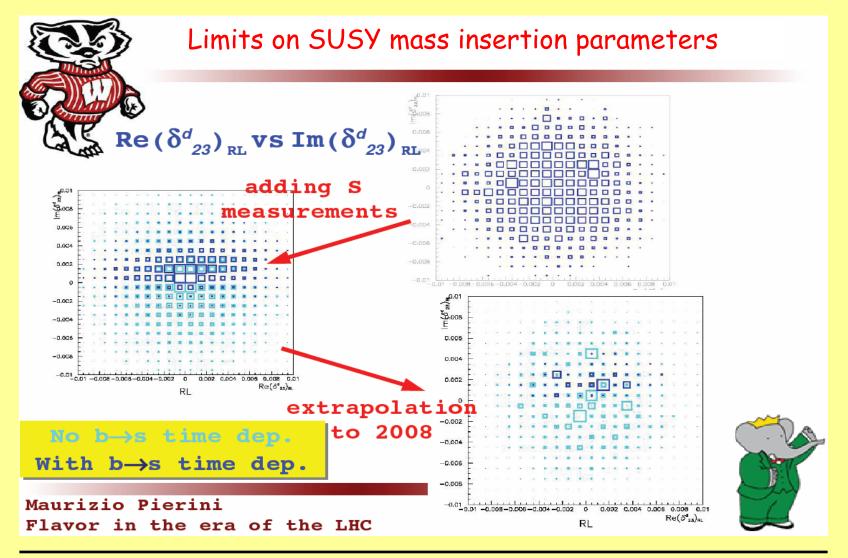
Projected γ uncertainty from B->DK



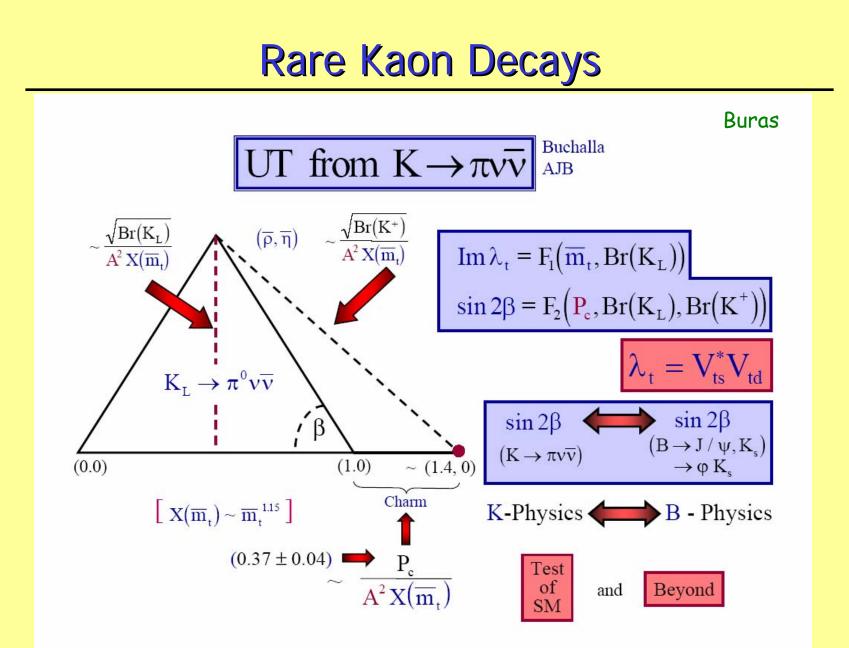
Robert

NP in $B_d - \overline{B}_d$ mixing (IV)

 γ and α are of major importance in constraining the NP parameters.

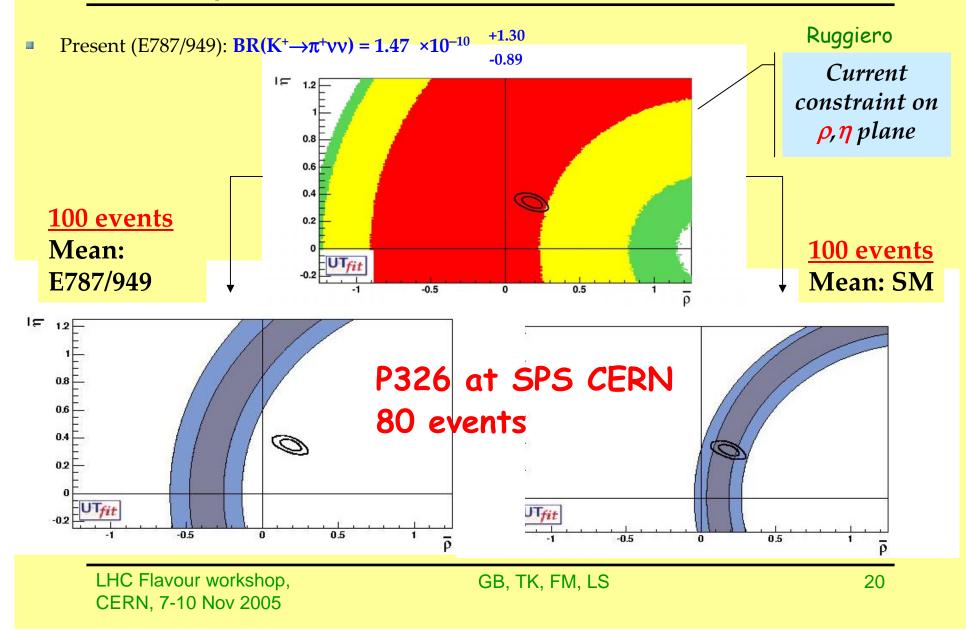

NB: $sin(2\beta+2\theta_{a}+\gamma)$ is not included. (almost no influence.) 16

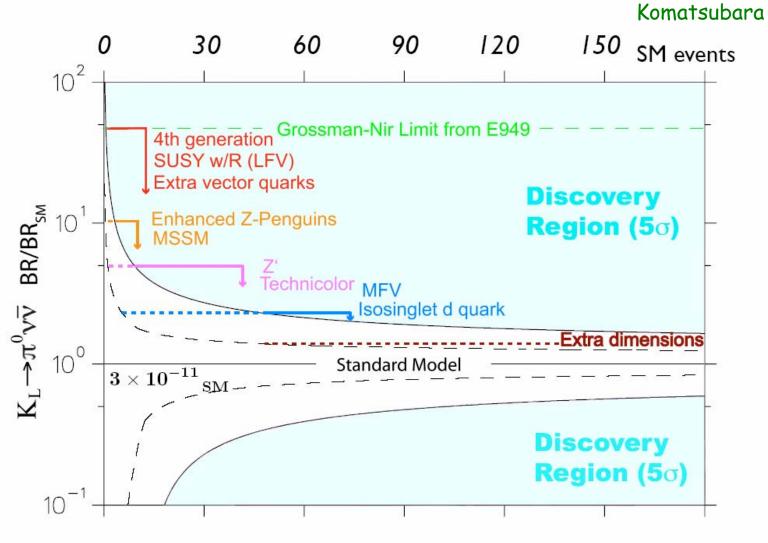
sin2β from Hadronic Penguins



LHC Flavour workshop, CERN, 7-10 Nov 2005 GB, TK, FM, LS

sin2β from Hadronic Penguins


LHC Flavour workshop, CERN, 7-10 Nov 2005 GB, TK, FM, LS


CERN2005 18

9

Prospects for K⁺ -> $\pi^+\nu\nu$ at CERN/SPS

Prospects for $K_{L}^{0} \rightarrow \pi^{0}vv$ at JPARC

based on Bryman-Buras-Isidori-Littenberg, hep-ph/0505171

D^o- D^o mixing: the data

Stone

- The study of D^o wrong-sign Kπ yields has been a key step in our experimental study of D^o D^o mixing.
- Caveats:
 - Complicated by interference between DCSD & mixing [strong phase $\delta \Rightarrow$ data constrain only x' & y']
 - Complicated by CP violation

Experiment	X ^{′2} (95 % C.L.) (X10 ⁻³)	y′(95% C.L.) (X10⁻³)	
Belle (2004)	0.81	-8.2 <y′<16< td=""><td></td></y′<16<>	
BaBar (2003)	2.2	-56 <y′<39< td=""><td></td></y′<39<>	
FOCUS (2001)	1.52	-124 <y′<-5< td=""><td></td></y′<-5<>	
CLEO (2000)	0.82	-58 <y′<10< td=""><td></td></y′<10<>	

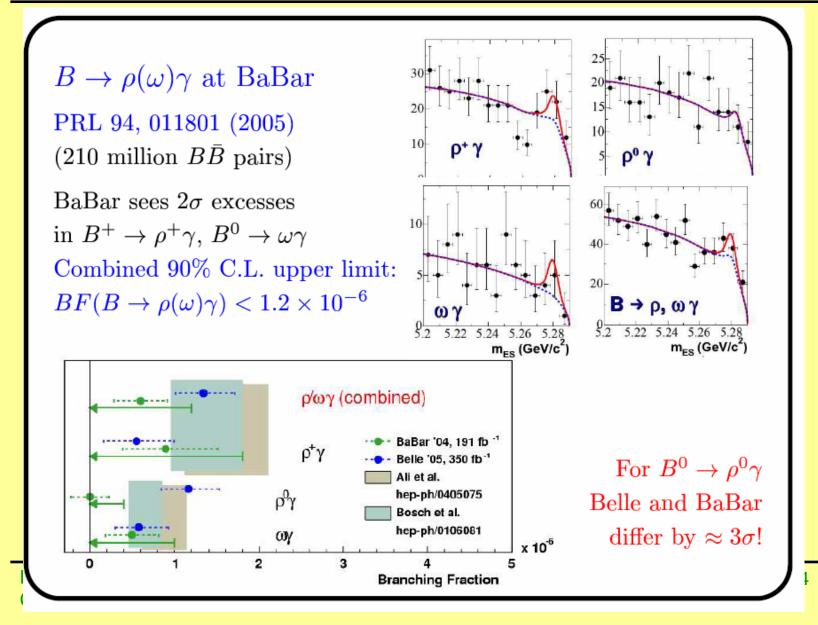
LAVOUR IN THE ERA OF THE LHC. Nov. 7-10, 200

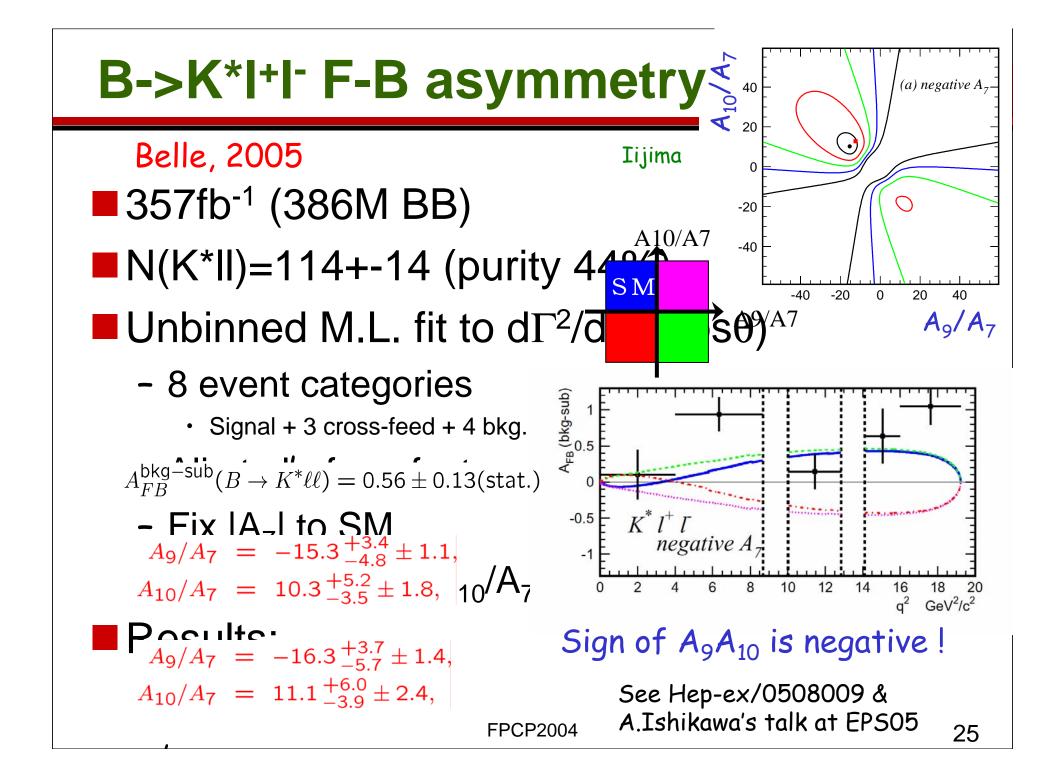
Most general fit

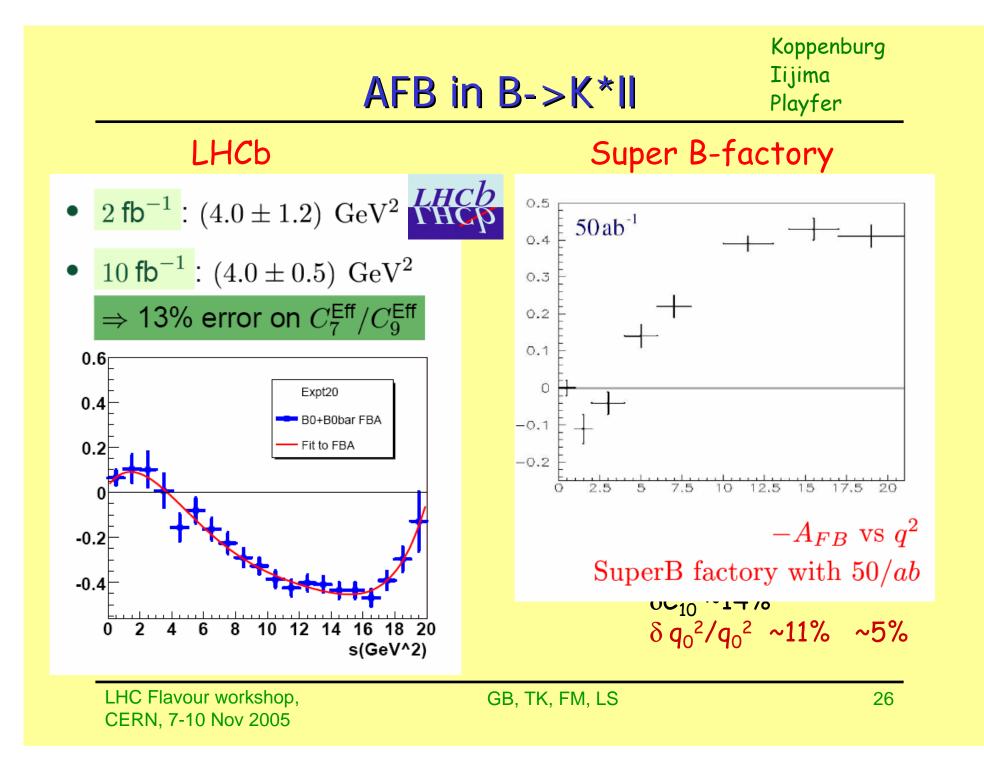
D^o D^o mixing: the data II

Stone

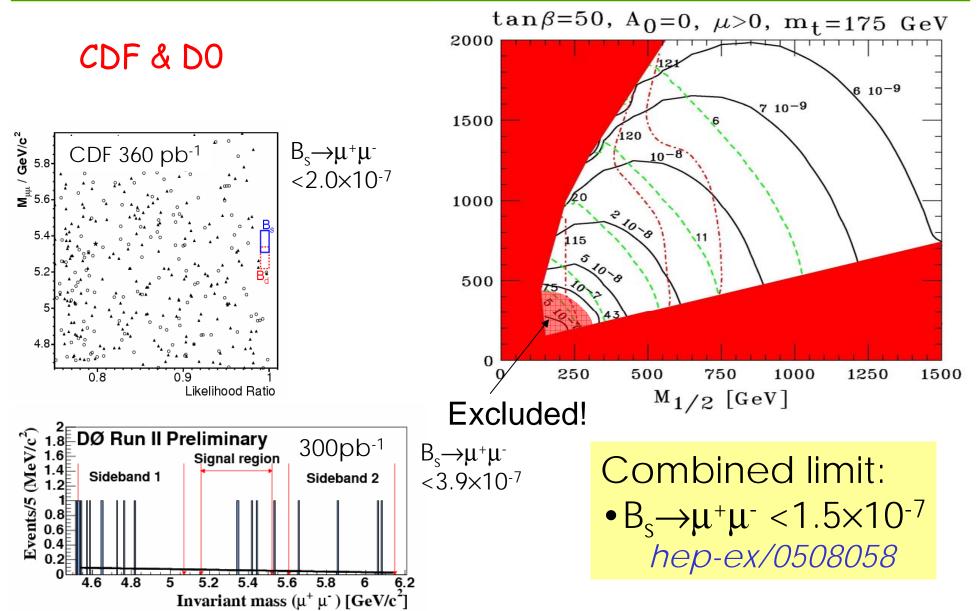
BaBar K^(*)ev Average $\Delta\Gamma$ CLEO Fit A 10 5 y (%) -5-10x (%)

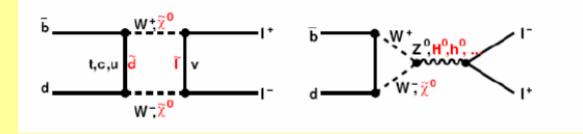

•D° semileptonic decays $R_{ws} = \frac{1}{2}(x^2+y^2)$ [no strong phase δ]


Experiment	R _M (95% CL)	$\sqrt{x^2+y^2}$
BaBar 04	0.0046	0.1
Belle 05	0.0016	0.056


•Dalitz plot analysis of $D^0 \rightarrow K^0_s \pi^+ \pi^-$ (CLEO II.V) comparable sensitivity

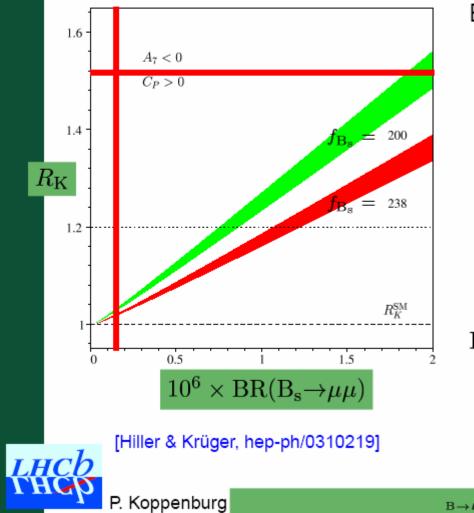
b -> d gamma


Playfer



$B_s \rightarrow \mu^+ \mu^-$ at Tevatron

$B_s \rightarrow \mu^+ \mu^- at LHC$


- Very rare decay, sensitive to new physics:
 - BR ~ 3.5×10^{-9} in SM, can be strongly enhanced in SUSY
 - Current limit from Tevatron (CDF+D0): 1.5×10^{-7} at 95% CL

		B _s →µ⁺µ⁻ signal (SM)	$b \rightarrow \mu, b \rightarrow \mu$ background	Inclusive bb background	Single event sensit. [10 ⁻¹⁰]
LHCb	1 yr - 2 fb ⁻¹	17	< 100	< 7500	
ATLAS	10 fb ⁻¹ 30 fb ⁻¹	7 21	~ 20 ~ 60		2.7 0.9
CMS	10 fb ⁻¹ 100 fb ⁻¹	7 26	< 1 < 6.4		

Schneider Speer Nikitine

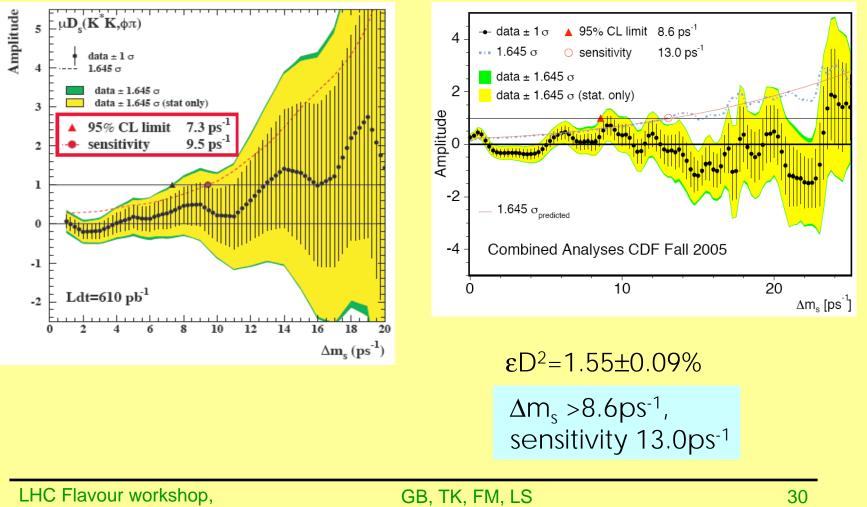
Relation to $B_s \rightarrow \mu \mu$ $R_k = \Gamma(B \rightarrow K \mu \mu) / \Gamma(B \rightarrow K e e)$

CERN, 7-10 Nov 2005

Experimental status:

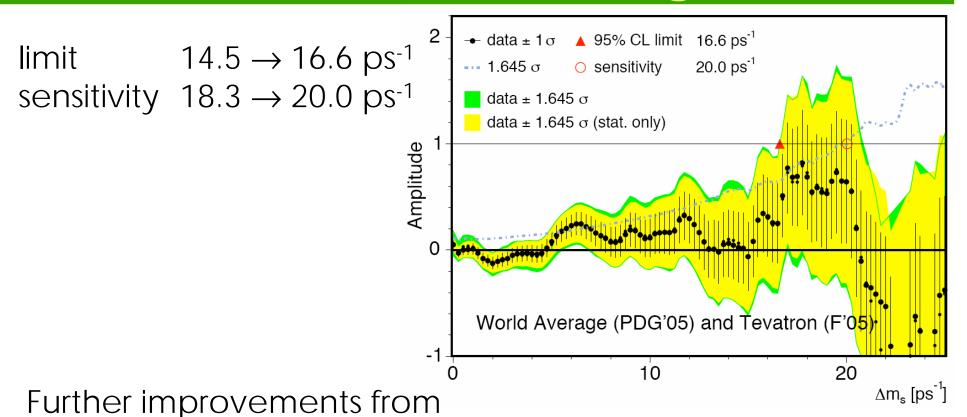
R_X	BaBar (208 fb ⁻¹) [hep-ex/0507005]
$R_{\rm K}$	$1.06 \pm 0.48 \pm 0.05$
R_{K^*}	$0.93 \pm 0.46 \pm 0.12$
	Belle (250 fb ^{-1})
	[hep-ex/0410006]
$R_{\rm K}$	$1.38 \substack{+0.39 \\ -0.41 \ -0.07} \substack{+0.06 \\ -0.07}$
R_{K^*}	$0.98 {}^{+0.30}_{-0.31} \pm 0.08$

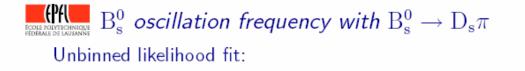
B_s→μμ: The present CDF limit is $1.5 \cdot 10^{-7}$ at 90% CL [hep-ex/0508036]


 ${\rm B}\!\rightarrow\!\ell\ell{\rm K}^{(*)}$ prospects at LHCb— Flavour in Era of the LHC — 09/11/2005 WG2 – p.10/22

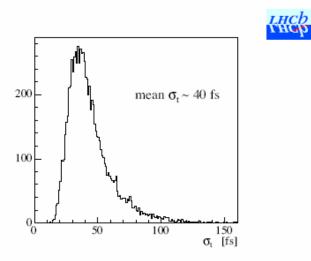
New Bs mixing results from Tevatron

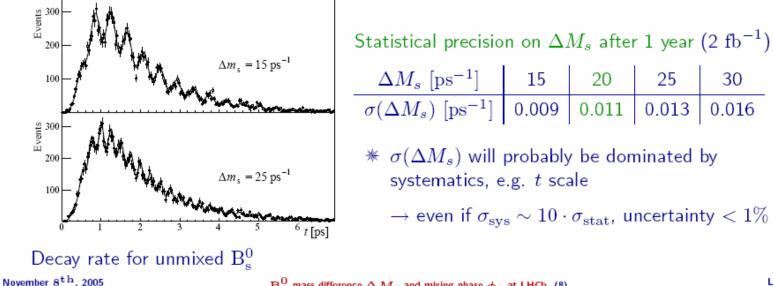
DO


CDF



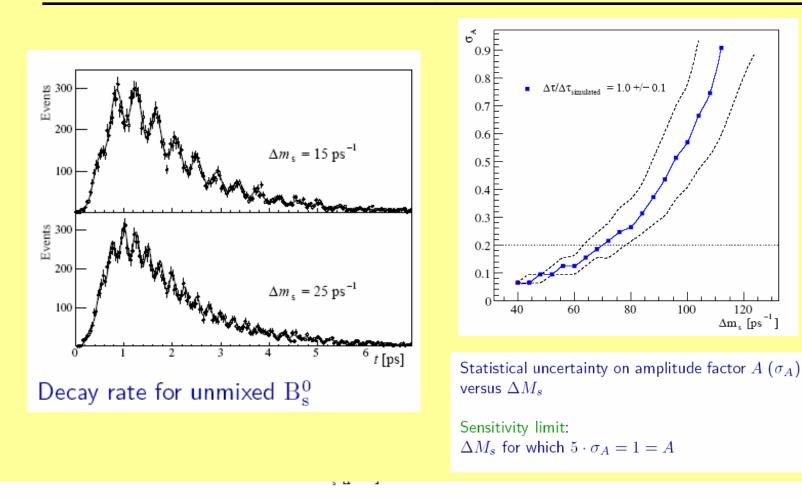
LHC Flavour workshop, CERN, 7-10 Nov 2005


New world average


- more data
- more decay channels (e.g. $B_s \rightarrow D_s^* \pi$)
- Same-side and opposite-side kaon tags

- ★ rates weighted with acceptance, tagging dilution
- * proper-time error σ_t obtained from full MC \rightarrow uncertainty to generated events
- $* \Delta \Gamma_s / \Gamma_s = 0.1$

Once oscillations observed, precise value of ΔM_s obtained: uncertainty $\sim 0.06\%$ (2 fb⁻¹)



'Flavour in the era of the LHC workshop', CERN

 B_s^0 mass difference ΔM_s and mixing phase ϕ_s at LHCb (8)

LHCb ∆m_s sensitivity

Fernandez

In 1 year, $\geq 5\sigma$ observation of B_s^0 oscillations up to $\Delta M_s = 68 \text{ ps}^{-1}$

 \rightarrow could exclude full SM range

'Immediate' measure of ΔM_s if small: 1/8 year LHCb running! (0.25 fb⁻¹, $\Delta M_s = 40 \text{ ps}^{-1}$)

LHCb ϕ_s sensitivity

 $\phi_s \text{ sensitivities}$

Physics input values		ϕ_s [rad]	ΔM_s [ps	$[\Delta \Gamma_s / \Gamma]$	$\tau_s = \tau_{\mathrm{B}^0_{\mathrm{s}}} \; [\mathrm{ps}]$	R_T
		-0.04	0.04 20.0		1.472	0.2
Fit	results (2 fb^{-1})					
_	Sensitivity $J/\psi \eta$	$(\gamma \gamma) = J/\psi \eta$	(3π) η_c	$\phi = J/\psi \phi$	$= \sigma(R_T) =$	- 0 0047
	$\sigma(\Delta\Gamma_s/\Gamma_s) \qquad 0.019$	9 0.024	0.02	0.011	- 0(117) -	0.0041
	Channels			$\sigma(\phi_{m{s}})$ [rad]	Weight ($\sigma/$	$\sigma_i)^2$ [%]
	$B^0_s \to J/\psi \ \eta(\gamma \ \gamma)$	_		0.112	6.	4

$B^0_s \to J/\psi \ \eta(\gamma \ \gamma)$	0.112	6.4
$B^0_s \rightarrow J/\psi \ \eta(\pi^+ \ \pi^- \ \pi^0)$	0.148	3.6
$B^0_s \to \eta_c \phi$	0.106	7.1
Combined three pure CP eigenstates channels	0.068	17.1
$B^0_s \to J/\psi \phi$	0.031	82.9
Combined all four CP eigenstates channels	0.028	100.0

Contribution from pure CP eigenstates: $\sim 17\%$

With 10 fb⁻¹ (5 years): $\sigma(\phi_s) \sim 0.013$ rad $\longrightarrow \sim 3\sigma$ for $\phi_s = -0.04$ rad (SM)

November 8th, 2005 'Flavour in the era of the LHC workshop', CERN

 ${\rm B}^0_{\rm s}$ mass difference ΔM_{s} and mixing phase ϕ_{s} at LHCb (15)

Luis Fernández LPHE - EPFLausanne

LHC Flavour workshop, CERN, 7-10 Nov 2005

GB, TK, FM, LS

Conclusions

- This meeting
 - many talks by people about New Physics and experimental status and prospects
- Major Tasks
 - Study complementarity between collider and flavour physics
 - ➔ Common session WG1 & WG2
 - Hadronic Uncertainties
 - Experimental Studies
- Real "work" in WG2 starts now
 - Encourage people to come forward
 - Study groups will be formed soon
- Thank you to all involved