Collider aspects of flavour physics at high Q

Werner Porod (IFIC-CSIC)

on behalf of T. Lari and L. Pape

- The tasks of WG1
- Identified subjects
- Outlook & future plans

The tasks

- Explore/document the potential of ATLAS/CMS for BSM flavour studies
- Identification of observables which allow different models to be distinguished
 - between different model classes, e.g. SUSY and UED
 - between different different realization of a particular model class, e.g. MSSM with MFV or additional flavour structures

Subjects

- Flavour phenomena in top decays
 - FCNC, anomalous couplings
 - constraints form EW precision tests & B decays versus direct measurements

Experimental talks by N. Castro (ATLAS) and L. Benucci (CMS), theoretical talks by J. Guasch, S. Heinemeyer and C. Verzegnassi

Physics motivation

- Top is the least studied quark in the SM
- The LHC will be a top factory

 $\sigma(pp \to t\bar{t}) = 833 \text{ pb}$ ($L = 10 \text{ fb}^{-1} \longrightarrow \sim 8 \text{ million of } t\bar{t} \text{ pairs per year}$)

- Top decays can be a window to physics beyond the SM:
 - new physics in $t \rightarrow bW$ decay
 - top quark FCNC decays: t
 ightarrow qZ, $t
 ightarrow q\gamma$, t
 ightarrow qg

CERN, 9th November 2005

2

A₋ *A*₋

ATLAS sensitivity to top decays beyond the SM

Flavour in the era of the LHC

Top quark FCNC decays

- expected 95% CL limits on BR (absence of signal)
 - Sequential analysis $|M(\ell^+\ell^-j) M_t| < 24 \text{ GeV}/c^2 \text{ cut}]$:

	t ightarrow qZ ($Z ightarrow ll, W ightarrow l u$)	t ightarrow qZ ($Z ightarrow ll, W ightarrow qq'$)
$L=100~{\rm fb}^{-1}$	6.3×10^{-5}	2.8×10^{-4}

- Discriminant analysis:

- * Modified frequentist likelihood method [A.L. Read, CERN report 2000-005 (2000) 81]
- * No cuts on the discriminant variable used

	t ightarrow qZ	$t ightarrow q \gamma$	t ightarrow qg
$L=10~{\rm fb}^{-1}$	3.4×10^{-4}	6.6×10^{-5}	1.4×10^{-3}
$L=100~{\rm fb}^{-1}$	$6.5 imes 10^{-5}$	$1.8 imes 10^{-5}$	$4.3 imes 10^{-4}$

* Dominant systematics: M_t and $\varepsilon_{btag} < 20\%$

CERN, 9th November 2005

18

An evidence for a $t \rightarrow Zq$ can be claimed at 5σ (99% CL) if: S/J(S+B) > 5

An FCNC signal with branching ratio BrUPPER (FCNC) is given by:

S = σ (t t) Br(W \rightarrow vI) Br(Z \rightarrow II) * 2 * $\int \mathcal{L} dt$ * ϵ * Br_{UPPER}(FCNC)

with $\int \mathcal{L}dt$ integrated luminosity and ε selection efficiency

Expected signal efficiency: 3-5%	10 fb ⁻¹	100 fb ⁻¹
Expected t \overline{t} events	22÷31	220÷310
Expected S	39÷43	88÷101
Expected Br _{UPPER} (FCNC)	(5.3 ÷11.4) 10 ⁻⁴	(2.0 ÷4.1) 10 ⁻⁴

significant improvement to existent limit - close to exotic models predictions

Leonardo Benucci, Top FCNC: preliminary studies in CMS FLAVOUR IN THE ERA OF THE LHC - Cern Workshop, 7th-10th November 2005

Precision Observables (POs):

Comparison of electro-weak precision observables with theory:

Test of theory at quantum level: Sensitivity to loop corrections

Very high accuracy of measurements and theoretical predictions needed

- Which model fits better?
- Does the prediction of a model contradict the experimental data?

Sven Heinemeyer, Flavour in the Era of the LHC, 08.11.2005

5

Flavour@LHC Nov. 05

<u>MSSM Example</u>: Prediction for M_W in the SM and the MSSM :

Sven Heinemeyer, Flavour in the Era of the LHC, 08.11.2005

6

Flavour@LHC Nov. 05

⇒ Evaluate electroweak precision observables including NMFV effects:

Mixing of stop/scharme

and of sbottom/sstrange:

$$(\tilde{t}_L, \tilde{t}_R, \tilde{c}_L, \tilde{c}_R) \begin{pmatrix} \tilde{T} \neq 0 \\ \neq 0 & \tilde{C} \end{pmatrix} \begin{pmatrix} \tilde{t}_L \\ \tilde{t}_R \\ \tilde{c}_L \\ \tilde{c}_R \end{pmatrix} \qquad (\tilde{b}_L, \tilde{b}_R, \tilde{s}_L, \tilde{s}_R) \begin{pmatrix} \tilde{B} \neq 0 \\ \neq 0 & \tilde{S} \end{pmatrix} \begin{pmatrix} \tilde{b}_L \\ \tilde{b}_R \\ \tilde{s}_L \\ \tilde{s}_R \end{pmatrix}$$

Analytical result:

evaluation with arbitrary NMFV couplings

Numerical result: *LL* mixing most relevant for EWPO:

$$ilde{t}/ ilde{c}: \left(egin{array}{ccc} \lambda\sqrt{ ilde{T}_{LL} ilde{C}_{LL}} & 0 \ 0 & 0 \end{array}
ight) \qquad ilde{b}/ ilde{s}: \left(egin{array}{ccc} \lambda\sqrt{ ilde{B}_{LL} ilde{S}_{LL}} & 0 \ 0 & 0 \end{array}
ight)$$

SU(2): $\widetilde{T}_{LL} \approx \widetilde{B}_{LL}$, $\widetilde{C}_{LL} \approx \widetilde{S}_{LL}$

 \rightarrow suggested by RGE analysis: LL > LR, RL > RR

 \rightarrow no relevant experimental bounds on λ

Sven Heinemeyer, Flavour in the Era of the LHC, 08.11.2005

Sven Heinemeyer, Flavour in the Era of the LHC, 08.11.2005

11

Flavour@LHC Nov. 05

Numerical results $BR(h \rightarrow bs)$

• Find the maximum $BR(h \rightarrow bs)$: MSSM parameter space scan

- We will avoid the fine-tuning region from now on
- The maximum $BR(h^0 \rightarrow bs)$ is obtained in the small α_{eff} scenario

11

Flavour@LHC Nov. 05

18

Flavour@LHC Nov. 05

• J. Guasch, S. Heinemeyer, S. Peñaranda, ...: top FCNC versus electroweak precision measurements in SUSY inclduing LR and RR mixing

• we need people for other models

 Explore complementarity of searches/discoveries BSM @ LHC and the potential of low energy flavour physics how can the information be used to get a coherent picture of the flavour sector

• Supersymmetry

- slepton spectroscopy: separation of \tilde{e} , $\tilde{\mu}$, $\tilde{\tau}$, mixing angles, $\tilde{\nu}_i$
- CP & flavour violation in the slepton sector
- \tilde{t} , \tilde{b} versus other \tilde{q} : separation and identification
- electroweak baryogenesis and light stop models
- flavour violation in \tilde{g} , $\tilde{\chi}_i^0$, $\tilde{\chi}_i^\pm$

Experimental talks by T. Lari (ATLAS) and I. Borjanovic (ATLAS), theoretical talks by W.P and T. Hurth

Flavour@LHC Nov. 05

L=100 fb ⁻¹	Fit	results		
Edg	e Nominal Value	Fit Value	Syst. Error Energy Scale	Statistical Error
$m(ll)^{e}$	^{ige} 77.077	77.024	0.08	0.05
m(qll)	edge 431.1	431.3	4.3	2.4
$m(ql)_{r}^{e}$	dge 302.1	300.8	3.0	1.5
$m(ql)^{e}$	dge 380.3	379.4	3.8	1.8
$m(qll)^{i}$	hres 203.0	204.6	2.0	2.8

Mass reconstruction

5 endpoints measurements, 4 unknown masses

$$\begin{aligned} \chi^{2} &= \sum \chi_{j}^{2} = \sum \left[\frac{E_{j}^{\text{theory}}(\vec{m}) - E_{j}^{\text{exp}}}{\sigma_{i}^{\text{exp}}} \right]^{2} \\ E_{j}^{i} &= E_{j}^{\text{nom}} + a_{j}^{i}\sigma_{j}^{\text{fit}} + b^{i}\sigma_{j}^{\text{Escale}} \\ E_{j}^{i} &= E_{j}^{\text{nom}} + a_{j}^{i}\sigma_{j}^{\text{fit}} + b^{i}\sigma_{j}^{\text{Escale}} \\ \Delta m(\chi_{1}^{\ 0}) &= 4.8 \text{ GeV}, \quad \Delta m(\chi_{2}^{\ 0}) &= 4.7 \text{ GeV}, \\ \Delta m(\eta_{L}) &= 540 \text{ GeV} \end{aligned}$$

Gjelsten, Lytken, Miller, Osland, Polesello, ATL-PHYS-2004-007

Flavour@LHC Nov. 05

SU3 dileptons

Fit with a triangular distribution with gaussian smearing. Edge in good agreement with true value 100.31 GeV

Edge after cuts: 99.8 ± 1.2 GeV

SM Background expected to be <u>negligible</u> after cuts. However, SUSY statistic also reduced. Study of SM background and optimization of cuts generally still under way

 $ilde{\chi}_2^0
ightarrow ilde{l}_i l_j
ightarrow l_k l_j ilde{\chi}_1^0$

Variations around SPS1a

Flavour@LHC Nov. 05

 $\frac{100}{\Gamma_{tot}d}\,\Gamma(\tilde{\chi}_2^0 \to l^+ l^- \tilde{\chi}_1^0)/d\,m(l^+ l^-)$

Flavour@LHC Nov. 05

- Low energy constraints
 - K-physics: ϵ'/ϵ , K^0 - \overline{K}^0 mixing, . . . significantly constrain 1 2 and 1 3 mixing
 - *B*-physics: $b \to s\gamma$, ΔM_{B_s} , ... most important beyond SM contributions: H^+ , $\tilde{\chi}_i^+$, \tilde{g}
- Correlations to Collider Physics
 - Squark decays:

$$egin{array}{rcl} ilde{u}_i & o & u_j ilde{\chi}_k^{\mathsf{O}}, d_j ilde{\chi}_l^{\mathsf{H}} \ ilde{d}_i & o & d_j ilde{\chi}_k^{\mathsf{O}}, u_j ilde{\chi}_l^{-} \end{array}$$

 These decays are governed by the same mixing matrices as the contributions to flavour violating low-energy observables and no GIM or Super-GIM is active.

Squark can have large flavourviolating decay modes, compatible with present data from flavour physics

	$ ilde{\chi}_1^0 c$	$ ilde{\chi}_1^0 t$	$ ilde{\chi}_2^0 c$	$ ilde{\chi}_2^0 t$	$ ilde{\chi}_3^0 c$	$ ilde{\chi}_{ m 3}^{ m 0} t$	$ ilde{\chi}_4^0 c$	$ ilde{\chi}_4^0 t$	$\tilde{\chi}_1^+s$	$\tilde{\chi}_1^+ b$	$ ilde{\chi}_2^+s$	$\tilde{\chi}_2^+ b$
\tilde{u}_1	4.7	18	5.2	9.6	$6 \ 10^{-3}$	0	0.02	0	11.3	46.4	2 10 ⁻³	4.7
$ ilde{u}_2$	19.6	1.1	0.4	17.5	$2 \ 10^{-2}$	0	$6 \ 10^{-2}$	0	0.5	57.5	3 10 ⁻³	2.9
$ ilde{u}_3$	7.3	3.7	20	1.4	$6 \ 10^{-2}$	0	0.6	0	40.3	3.1	1	18.5
$ ilde{u}_6$	5.7	0.4	11.1	5.3	4 10 ⁻²	5.7	0.6	13.2	22.9	13.1	0.6	8.0

Branching ratios (in %) of u-type squarks

Branching ratios (in %) of d-type squarks

	$ ilde{\chi}_1^{0}s$	$ ilde{\chi}_1^{0} b$	$ ilde{\chi}_2^0 s$	$ ilde{\chi}_2^{0} b$	$ ilde{\chi}_3^0 s$	$ ilde{\chi}_{ extsf{3}}^{ extsf{0}}b$	$ ilde{\chi}_4^0 s$	$ ilde{\chi}_4^{0} b$	$ ilde{\chi}_1^-c$	$ ilde{\chi}_1^- t$	$ ilde{\chi}_2^- c$	$ ilde{\chi}_2^- t$	\tilde{u}
\tilde{d}_1	1.2	5.7	8.4	10.6	2×10^{-2}	1.5	0.2	0.9	16.6	34.1	0.6	0	
\tilde{d}_2	17.4	5.8	5.1	15.7	$7 imes 10^{-2}$	7.4	0.3	09.2	9.7	19.7	0.7	0	
$ ilde{d}_4$	14.7	21.7	11.3	2.2	$5 imes 10^{-2}$	10.6	0.5	8.4	22.1	3.6	1.2	0	
$ ilde{d}_6$	1.7	0.5	20.5	6.9	0.1	0.9	1.2	1.3	40.3	10.2	3.4	11.1	

- non-SUSY BSM
 - isosinglet quarks (as e.g. in E_6) and flavour physics
 - extra dimensions

Experimental talk by G. Ünel (ATLAS) and theoretical talks by G. Burdman and J.A. Aguilar-Saavedra

Objective of this study

- SuperStrings & GUT models predict E₆ as the effective group for underlying symmetry.
- Assume that SM comes from breaking down of E₆:

 $SU_C(3) \times SU_W(2) \times U_Y(1)$ E₆

• 3 quark families with additions as predicted by E₆:

$$\begin{pmatrix} u_L \\ d_L \end{pmatrix}, u_R, d_R, D_L, D_R \begin{pmatrix} c_L \\ s_L \end{pmatrix}, c_R, s_R, S_L, S_R \begin{pmatrix} t_L \\ b_L \end{pmatrix}, t_R, b_R, B_L, B_R$$

New iso-singlet quarks

Can ATLAS discover these & validate E₆ GUT models ?

Flavour@LHC Nov. 05

2

• σ_D pair > σ_D single , hence we study pair production

•both DD and $D\overline{D}$ are considered

Flavour@LHC Nov. 05

Signal channels

$D\bar{D} \rightarrow$	Final State	Expected Signal	Decay B.R.	Total B.R.
$Z Z d \bar{d}$	$Z \to l\bar{l} \ Z \to l\bar{l}$	4 l + 2 jet	0.07 imes 0.07	0.0005 NC-
0.33 imes 0.33	$ \qquad \qquad Z \to l\bar{l} \ Z \to vv $	$2l + 2jet + P_T$	$2 \times 0.07 \times 0.2$	0.0030 NC-2
	$ Z \to l\bar{l} \ Z \to q\bar{q} $	2l+4jet	$2 \times 0.07 \times 0.7$	0.0107
Z W d u	$ Z \to l\bar{l} \ W \to l\bar{v} $	$3l + 2jet + P_T$	0.07 imes 0.21	0.0065 CC-
2 imes 0.33 imes 0.67	$Z \to l\bar{l} \ W \to q\bar{q}$	2l + 4jet	0.07 imes 0.68	0.0211

We initially study: NC-1, NC-2, CC-1 (NC-1 details: ATL-COM-PHYS-2005-041)

- All SM processes giving similar final state are studied as background. (2jet & 2Z, 2jet & WZ)
 - misidentifications not considered: e/gamma
- We studied 4e, 4µ & 2e/2µ cases for Z decays.
 - Events generated in CompHEP & MadGraph
 - Used ATLAS software framework (Athena-9.0.3) for a fast simulation (ATLFast) based study, analysis done in ROOT

6

Flavour@LHC Nov. 05

Next steps

- Merge results of all channels (NCI +NC2 +CC) to improve the discovery reach.
- Additional neutral gauge bosons (Z') predicted by E₆ could enhance the signal cross section,
 - Implemented in CompHEP, preparing a draft note.

 study an example D quark mass and background with full (Geant) simulation to verify the fast simulation results.

Flavour@LHC Nov. 05

17

Overview of the model Signals at LHC Signals at B factories Conclusions

Signals at LHC

- Production of the new quark *T*
 - QCD pair production $pp \to T\overline{T}$ [Aguila et al., NPB '90]
 - EW single production $pp \rightarrow Tj$

- [Han et al., PRD '03]
- FCN processes involving the top quark [JAAS, APPB '04]

Rare top decays $t \to Zq$, $t \to Hq$ (q = u, c)

Single top production $gq \rightarrow Zt, gq \rightarrow Ht$

・< 目< < 目< < 目< < 回</p>

J. A. Aguilar-Saavedra Signals of quark singlets at large colliders and B factories

Flavour@LHC Nov. 05

Overview of the model Signals at LHC Signals at B factories Conclusions	

 $m_T = 500 \text{ GeV}, 10 \text{ fb}^{-1} \longrightarrow 10.9 \sigma \text{ evidence} (300 - 660 \text{ GeV})$

J. A. Aguilar-Saavedra Signals of quark singlets at large colliders and B factories

Flavour@LHC Nov. 05

Over	view of the model Signals at LHC nals at B factories Conclusions	
Conclusions		

Q = 2/3 singlets with a mass up to ~ 1 TeV can be observed at LHC

If they exist, they may give new effects in low energy physics

- CP asymmetries in *B* decays
- $\delta m_{B_s}, \delta m_D$
- Rare kaon decays

as well as in top physics

- top FCN decays $t \rightarrow qZ$
- $e^+e^- \rightarrow t\bar{t}$ (ILC)

	J. A. Aguilar-Saavedra	Signals of quark singlets at large colliders and B factories
Flavour@LHC Nov. 05	36	Werner Porod (IFIC-Valencia)

Flavor Physics in UED

If we consider the SM in the bulk in d extra dimensions

$$\mathcal{L} = \mathcal{L}_F + (D_M \Phi(x, y))^{\dagger} D^M \Phi(x, y) + \frac{1}{\Lambda^{d/2}} \bar{\Psi}(x, y) Y \Phi(x, y) \Psi(x, y)$$

and *Y* is the only source of flavor violation $\Rightarrow MFV$. Here Λ is the UV cutoff, and $\Lambda R \gg 1$.

- In this scenario, only flavor physics effects are generated by loops of KK modes in flavor observables: B, D K rare decays and mixing. (Buras, Spranger, Poschenrieder, Weiler '03)
- **9** There is no high p_T signal for flavor

Theories with Extra DimensionsandFlavor Physics - p.7/16

WED Flavor Signals

Two type of flavor effects:

- **FCNC** couplings of the Z:
 - Interesting low energy flavor signals. E.g. $b \rightarrow s\ell^+\ell^-$ (Burdman, Nomura '03, Agashe, Perez, Soni '04)
 - Deviations in $\overline{t_L}t_L Z$ and $\overline{t_L}b_L W$ are $\mathcal{O}(\text{few}\%)$.
 - Deviations in $\bar{t_R}t_R Z$ could be $\mathcal{O}(1)$.
- FCNC couplings of KK gauge bosons (e.g. KK gluons):
 - E.g. FCNC coupling of the 1st KK gluon $G^{(1)}t\bar{c}$.
 - Effects in non-leptonic *B* decays and CP Asymmetries (Burdman '03)
 - \blacksquare \Rightarrow Potentially large effect in single-top production at the LHC
 - Sinematics is very different than the SM single-top.
 - Also anomaly in the angular distribution in $b\overline{b}$.

Theories with Extra DimensionsandFlavor Physics - p.14/16

Outlook & future plans

- additional top studies concerning FCNC and precision data initiated
- Experimentalists should check their strategies concerning theory motivated assumptions in the flavour sector
- experimental studies are needed to get hand on flavour information at LHC
- Which BSM processes at LHC are interesting from the experimental / theoretical side ⇒ we need some more talking
- c identification

Flavour@LHC Nov. 05

- Flavour benchmark points
 - SUSY: W.P., ...
 - extra dimensions: G. Burdman, ...
 - other non-SUSY BSM: are they needed, who is willing to start
 - need of program set/interfaces to combine collider programs with low energy data [SLHA2 for SUSY case]
 - webpage will be created with complete information and links to programs