Topics on non leptonic B_s decays

Pietro Colangelo INFN - Sezione di Bari - Italy Pietro.Colangelo@ba.infn.it

> based on work in collaboration with R. Ferrandes and F. De Fazio

Simple considerations and consequences starting from few results obtained at the B factories

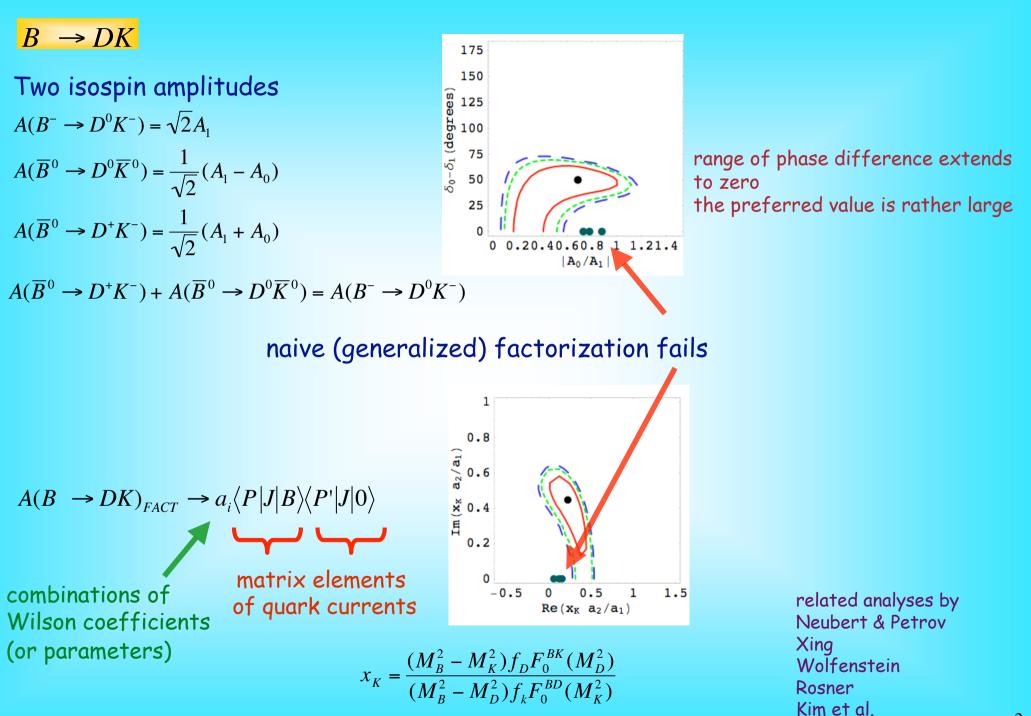
- annihilation diagrams can be sizeable
- strong phases are not always small
- ***** several B_s non leptonic decay rates can be carefully predicted

immediate example of synergy between flavour factories and hadron colliders (-> M.Mangano)

Flavour in the era of the LHC CERN - 7/10 November 2005 decays induced by the $b \rightarrow c \overline{u} d$ and $b \rightarrow c \overline{u} s$ transitions

 $B \rightarrow D_{(s)}P$

$B^- \rightarrow D^0 \pi^-$	$B^- \rightarrow D^0 K^-$
$\overline{B}^0 \rightarrow D^0 \pi^0$	$\overline{B}^{0} \rightarrow D^{0} \overline{K}^{0}$
$\overline{B}^{0} \rightarrow D^{+}\pi^{-}$	$\overline{B}^{0} \rightarrow D^{+}K^{-}$


$$\overline{B}^{0} \to D^{0} \eta$$
$$\overline{B}^{0} \to D^{0} \eta'$$

$$\overline{B}^{0} \to D_{s}^{+}K^{-}$$

precisely measured by BaBar and Belle (previous data from Cleo)

- Isospin analysis possible
- evidence of sizeable annihilation contribution
- sensitivity to $\eta \eta'$ mixing

decay mode	BR
$B^- \to D^0 \pi^-$	$(4.98 \pm 0.29) \times 10^{-3}$
$\overline{B}^0 \to D^0 \pi^0$	$(2.91 \pm 0.28) \times 10^{-4}$
$\overline{B}^0 \to D^+ \pi^-$	$(2.76 \pm 0.25) \times 10^{-3}$
$\overline{B}^0 \to D_s^+ K^-$	$(3.8 \pm 1.3) \times 10^{-5}$
$\overline{B}^0 \to D^0 \eta$	$(2.2\pm 0.5)\times 10^{-4}$
$\overline{B}^0 \to D^0 \eta'$	$(1.7 \pm 0.4) \times 10^{-4}$
$B^- \rightarrow D^0 K^-$	$(3.7 \pm 0.6) \times 10^{-4}$
$\overline{B}^0 \to D^0 \overline{K}^0$	$(5.0 \pm 1.4) \times 10^{-5}$
$\overline{B}^0 \to D^+ K^-$	$(2.0 \pm 0.6) \times 10^{-4}$

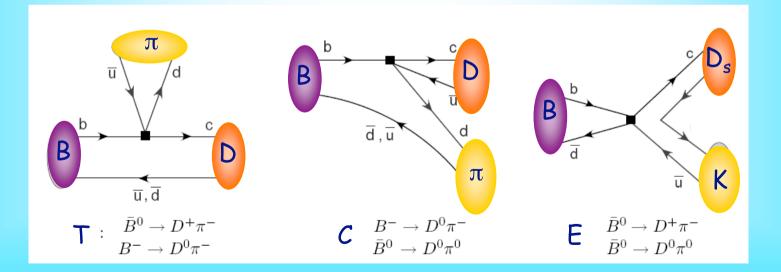
observation of the annihilation process $\overline{B}^0 \rightarrow D_s^+ K^$ further evidence of the failure of naive (generalized) factorization

$$A(\overline{B}^{0} \rightarrow D_{s}^{+}K^{-})_{FACT} \rightarrow \langle 0|J|B \rangle \langle D_{s}^{+}K^{-}|J|0 \rangle \rightarrow (M_{D}^{2} - M_{K}^{2})F_{0}^{0 \rightarrow D_{s}K}(M_{B}^{2})$$

$$\underbrace{A(\overline{B}^{0} \rightarrow D_{s}^{+}K^{-})_{FACT}}_{A(\overline{B}^{0} \rightarrow D^{+}\pi^{-})_{FACT}} \rightarrow \underbrace{\frac{a_{2}}{a_{1}}}_{a_{1}} \underbrace{(M_{D}^{2} - M_{K}^{2})f_{B}F_{0}^{0 \rightarrow D_{s}K}(M_{B}^{2})}_{M_{B}^{2}f_{k}}F_{0}^{BD}(M_{K}^{2})}$$

$$\underbrace{\text{tiny}}$$

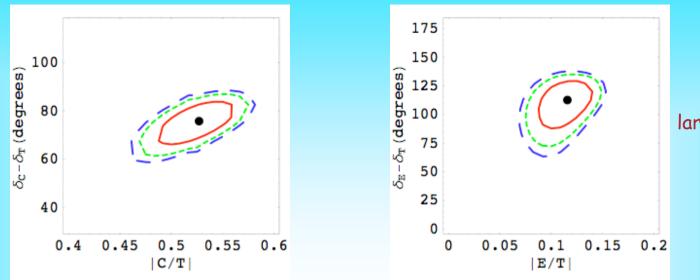
$$\frac{B(\overline{B}^{0} \to D_{s}^{+}K^{-})}{B(\overline{B}^{0} \to D^{+}\pi^{-})}\Big|_{\exp} = 1.4 \%$$


SU(3) analysis

$$H_W = V_{cb} V_{ud}^* T_{01-1}^{(8)} + V_{cb} V_{us}^* T_{-1\frac{1}{2}-\frac{1}{2}}^{(8)} \qquad T_v^{(\mu)} \quad v = (Y, I, I_3)$$

combing with the initial B mesons (3*) one obtains 3*, 6 and 15* reprs. which coincide with the multiplets obtained combining P and D_(s) only three independent amplitudes

they can be rearranged to reproduce three quark topologies: T, C and E


Zeppenfeld Chau Grinstein & Lebed

decay mode	amplitude	BR
$B^- \rightarrow D^0 \pi^-$	$V_{ud}^* V_{cb} \ (C+T)$	$(4.98 \pm 0.29) \times 10^{-3}$
$\overline{B}^0 \to D^0 \pi^0$	$\frac{1}{\sqrt{2}}V_{ud}^*V_{cb} \ (C-E)$	$(2.91 \pm 0.28) \times 10^{-4}$
$\overline{B}^0 \to D^+ \pi^-$	$V_{ud}^* V_{cb} \ (T+E)$	$(2.76 \pm 0.25) \times 10^{-3}$
$\overline{B}^0 \to D_s^+ K^-$	$V_{ud}^*V_{cb} E$	$(3.8 \pm 1.3) \times 10^{-5}$
$\overline{B}^0 \to D^0 \eta_8$	$-\frac{1}{\sqrt{6}}V_{ud}^*V_{cb} \ (C+E)$	
$\overline{B}^0 \to D^0 \eta_0$	$V_{ud}^*V_{cb} D$	
$\overline{B}^0 \to D^0 \eta$		$(2.2 \pm 0.5) \times 10^{-4}$
$\overline{B}^0 \to D^0 \eta'$		$(1.7 \pm 0.4) \times 10^{-4}$
$B^- \to D^0 K^-$	$V_{us}^* V_{cb} \ (C+T)$	$(3.7 \pm 0.6) \times 10^{-4}$
$\overline{B}^0 \to D^0 \overline{K}^0$	$V_{us}^*V_{cb} C$	$(5.0 \pm 1.4) \times 10^{-5}$
$\overline{B}^0 \to D^+ K^-$	$V_{us}^*V_{cb} T$	$(2.0 \pm 0.6) \times 10^{-4}$

data are sufficient to determine T, C and E in moduli and phase differences **input:** $\left| \frac{V_{us}}{V_{ud}} \right| = 0.226 \pm 0.003$

and to determine D input: ϑ_{mixing}

large phase differences

precise determination of the T, C and E independent amplitudes

see also Chua & Hou

the singlet amplitude D determined using an $\eta - \eta'$ mixing angle of -15.4° (in a one angle mixing scheme) Feldmann

$$\left|\frac{D}{T}\right| = 0.41 \pm 0.11$$
$$\delta_D - \delta_T = -(25 \pm 11)^\circ$$

Decay mod	le Amplitude	BR	
$\overline{\bar{B}^0_s} \to D^+_s$	$\pi^- V_{ud}^* V_{cb} T$	$(2.9 \pm 0.6) \times 10^{-3}$	
$\bar{B}^0_s \to D^0 \bar{B}$	$\bar{K}^0 \qquad V^*_{ud} V_{cb} C$	$(8.1 \pm 1.8) \times 10^{-4}$	
$\bar{B}^0_s \to D^0 \eta$	$\frac{1}{\sqrt{6}}V_{ud}^*V_{cb}(2C-E)$	⁽)	
$\bar{B}^0_s \to D^0 \eta$	$V_{ud}^* V_{cb} D$		
$\bar{B}^0_s \to D^0 \eta$	1	$(4.1\pm 2.3)\times 10^{-4}$	
$\bar{B}^0_s \to D^0 \eta$	·	$(1.9 \pm 1.6) \times 10^{-4}$	
$\bar{B}^0_s \to D^0 \pi$	$\tau^0 \qquad -\frac{1}{\sqrt{2}}V_{us}^*V_{cb}E$	$(1.0\pm 0.3)\times 10^{-6}$	
$\bar{B}_s^0 \to D^+$	$\pi^- V_{us}^* V_{cb} E$	$(2.0\pm 0.6)\times 10^{-6}$	
$\bar{B}_s^0 \to D_s^+.$	$K^- \qquad V^*_{us} V_{cb}(T+E)$	$(1.8 \pm 0.3) \times 10^{-4}$	(Formender et al. DLD OF)
			(Ferrandes et al., PLB 05)

decay rates precisely predicted

decay rates precisely predicted

				abaanuad mada fan B
	Decay mode	Amplitude	BR	\sim observed mode for B_s
($\bar{B}^0_s \to D^+_s \pi^-$	$V_{ud}^* V_{cb} T$	$(2.9 \pm 0.6) \times 10^{-3}$	
	$B_s^0 \to D^0 \bar{K}^0$	$V_{ud}^* V_{cb} C$	$(8.1 \pm 1.8) \times 10^{-4}$	$\frac{\Gamma(B_s^0 \to D_s^- \pi^+)}{\Gamma(B^0 \to D^- \pi^+)} = 1.05 \pm 0.24$
	$\bar{B}^0_s \to D^0 \eta_8$	$\frac{1}{\sqrt{6}}V_{ud}^*V_{cb}(2C-E)$		$\Gamma(B^0 \to D^- \pi^+)$
	$\bar{B}^0_s \to D^0 \eta_0$	$V_{ud}^* V_{cb} D$		
	$\bar{B}^0_s \to D^0 \eta$		$(4.1\pm 2.3)\times 10^{-4}$	$\Gamma(B^0 \rightarrow D^- \pi^+)$
	$\bar{B}^0_s \to D^0 \eta'$		$(1.9 \pm 1.6) \times 10^{-4}$	$\frac{\Gamma(B_s^0 \rightarrow D_s^- \pi^+)}{\Gamma(B^0 \rightarrow D^- \pi^+)} = 1.32 \pm 0.18 \pm 0.38$
	$\bar{B}^0_s \to D^0 \pi^0$	$-\frac{1}{\sqrt{2}}V_{us}^*V_{cb}E$	$(1.0\pm 0.3)\times 10^{-6}$	
	$\bar{B}^0_s \to D^+ \pi^-$	$V_{us}^* V_{cb} E$	$(2.0\pm 0.6)\times 10^{-6}$	
	$\bar{B}^0_s \to D^+_s K^-$	$V_{us}^* V_{cb}(T+E)$	$(1.8\pm 0.3)\times 10^{-4}$	
			_	(Ferrandes et al., PLB 05)

Decay mode Amplitude BR $\bar{B}^0_s \rightarrow D^+_s \pi^ (2.9 \pm 0.6) \times 10^{-3}$ $V_{ud}^* V_{cb} T$ $\bar{B}^0_s \rightarrow D^0 \bar{K}^0$ $V_{ud}^* V_{cb} C$ $(8.1 \pm 1.8) \times 10^{-4}$ $\bar{B}^0_s \to D^0 \eta_8$ $\frac{1}{\sqrt{6}}V_{ud}^*V_{cb}(2C-E)$ sensitive to $\eta - \eta'$ mixing $\bar{B}^0_s \rightarrow D^0 \eta_0$ $V_{ud}^* V_{cb} D$ important for CP violation studies $\bar{B}^0_s \to D^0 \eta$ $\bar{B}^0_s \to D^0 \eta'$ $(4.1 \pm 2.3) \times 10^{-1}$ through the modes $(1.9 \pm 1.6) \times 10^{-10}$ $\overline{B}^0_{\mathfrak{s}}(B^0_{\mathfrak{s}}) \to D_{\mathfrak{s}}\eta^{(\prime)}$ $\bar{B}^0_s \to D^0 \pi^0 \qquad -\frac{1}{\sqrt{2}} V^*_{us} V_{cb} E$ $(1.0\pm 0.3)\times 10^{-6}$ (Fleischer) $\bar{B}^0_s \rightarrow D^+ \pi^ (2.0\pm 0.6)\times 10^{-6}$ $V_{\mu s}^* V_{ch} E$ $\bar{B}_s^0 \to D_s^+ K^ V_{us}^* V_{cb}(T+E)$ $(1.8 \pm 0.3) \times 10^{-4}$ (Ferrandes et al., PLB 05)

decay rates precisely predicted

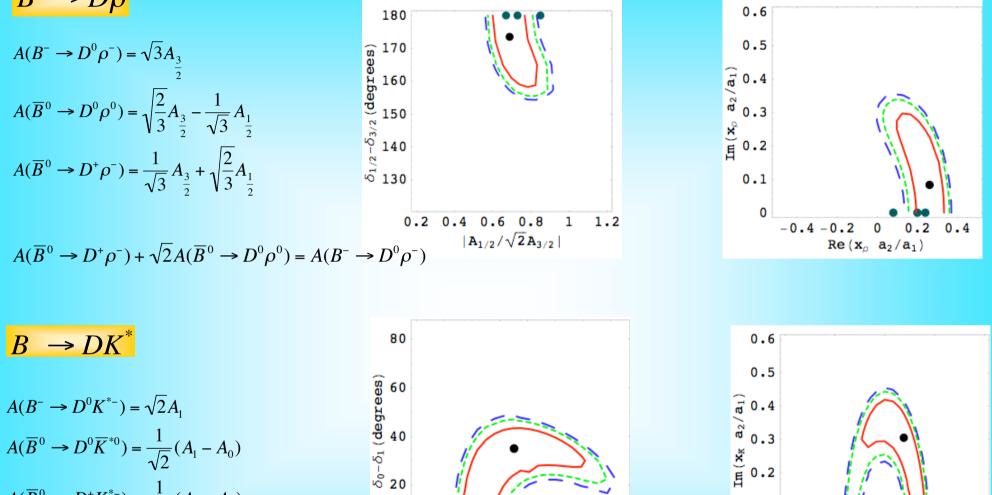
Decay mode Amplitude BR $\bar{B}^0_s \rightarrow D^+_s \pi^ (2.9 \pm 0.6) \times 10^{-3}$ $V_{ud}^* V_{cb} T$ $\bar{B}^0_s \rightarrow D^0 \bar{K}^0$ $(8.1 \pm 1.8) \times 10^{-4}$ $V_{ud}^* V_{cb} C$ $\frac{1}{\sqrt{6}}V_{ud}^*V_{cb}(2C-E)$ $\bar{B}^0_s \rightarrow D^0 \eta_8$ $\bar{B}^0_s \to D^0 \eta_0$ $V_{ud}^* V_{cb} D$ $\bar{B}_s^0 \to D^0 \eta$ $(4.1\pm 2.3)\times 10^{-4}$ $\bar{B}^0_s \to D^0 \eta'$ $(1.9 \pm 1.6) \times 10^{-4}$ $\bar{B}_s^0 \to D^0 \pi^0$ $\bar{B}_s^0 \to D^+ \pi^-$ $-\frac{1}{\sqrt{2}}V_{us}^*V_{cb}E$ $V_{us}^*V_{cb}E$ $(1.0 \pm 0.3) \times 10^{-6}$ purely annihilation processes $(2.0 \pm 0.6) \times 10^{-10}$ $(1.8 \pm 0.3) \times 10^{-4}$ $V_{us}^* V_{cb}(T+E)$ (Ferrandes et al., PLB 05)

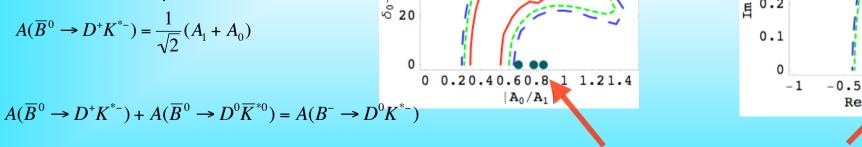
decay rates precisely predicted

	Decay mode	Amplitude	BR	
	$\bar{B}^0_s \to D^+_s \pi^-$	$V_{ud}^* V_{cb} T$	$(2.9 \pm 0.6) \times 10^{-3}$	bckg
	$\bar{B}^0_s \rightarrow D^0 \bar{K}^0$	$V_{ud}^* V_{cb} C$	$(8.1 \pm 1.8) \times 10^{-4}$	
	$\bar{B}^0_s \to D^0 \eta_8$	$\frac{1}{\sqrt{6}}V_{ud}^*V_{cb}(2C-E)$		
	$\bar{B}^0_s \to D^0 \eta_0$	$V_{ud}^* V_{cb} D$		
	$\bar{B}^0_s \to D^0 \eta$		$(4.1\pm 2.3)\times 10^{-4}$	
	$\bar{B}^0_s \to D^0 \eta'$		$(1.9 \pm 1.6) \times 10^{-4}$	important channel to determine γ
	$\bar{B}^0_s \to D^0 \pi^0$	$-\frac{1}{\sqrt{2}}V_{us}^*V_{cb}E$	$(1.0\pm 0.3)\times 10^{-6}$	(Aleksan et al., Fleischer) O. Schneider's talk
	$\bar{B}^0_s \rightarrow D^+ \pi^-$	$V_{us}^* V_{cb} E$	$(2.0 \pm 0.6) \times 10^{-6}$	
($\bar{B}^0_s \to D^+_s K^-$	$V_{us}^* V_{cb}(T+E)$	$(1.8 \pm 0.3) \times 10^{-4}$	(Ferrandes et al., PLB 05)

decay rates precisely predicted

Decay mode	Amplitude	BR	
$\overline{\bar{B}^0_s} \to D^+_s \pi^-$	$V_{ud}^* V_{cb} T$	$(2.9 \pm 0.6) \times 10^{-3}$	
$\bar{B}^0_s \to D^0 \bar{K}^0$	$V_{ud}^* V_{cb} C$	$(8.1 \pm 1.8) \times 10^{-4}$	
$\bar{B}^0_s \to D^0 \eta_8$	$\frac{1}{\sqrt{6}}V_{ud}^*V_{cb}(2C-E)$		
$\bar{B}^0_s \to D^0 \eta_0$	$V_{ud}^* V_{cb} D$		
$\bar{B}^0_s \to D^0 \eta$		$(4.1\pm 2.3)\times 10^{-4}$	
$\bar{B}^0_s \to D^0 \eta'$		$(1.9 \pm 1.6) \times 10^{-4}$	
$\bar{B}^0_s \to D^0 \pi^0$	$-\frac{1}{\sqrt{2}}V_{us}^*V_{cb}E$	$(1.0\pm 0.3)\times 10^{-6}$	
$\bar{B}^0_s \to D^+ \pi^-$	$V_{us}^* V_{cb} E$	$(2.0\pm 0.6)\times 10^{-6}$	
$\bar{B}^0_s \to D^+_s K^-$	$V_{us}^* V_{cb}(T+E)$	$(1.8 \pm 0.3) \times 10^{-4}$	(Formended at al. DLD OF)
			(Ferrandes et al., PLB 05)

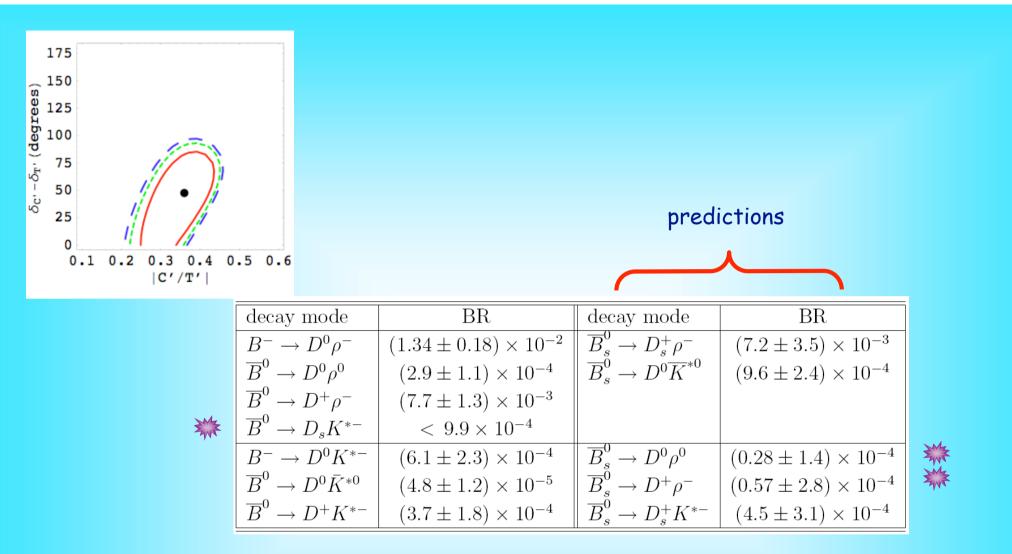

decay rates precisely predicted


information useful to the physics programmes for B_s at LHC and Tevatron

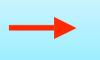
SU(3) breaking terms involve additional parameters (Rosner et al.)

-> at present they are compatible with zero

$$B \rightarrow D\rho$$



naive (generalized) factorization marginal


1

 $Re(x_{x}, a_{2}/a_{1})$

0.5

less accuracy in the predictions annihilation processes poorly determined

improvements expected in the near future

some modes are relevant for CP violation studies in B_s

$$B_s \rightarrow D_{(s)}^* \pi(K)$$

$$B_s \to D_{(s)}^* \rho(K^*)$$

present data on $B \rightarrow D^* \pi(K)$ and $B \rightarrow D^* \rho(K^*)$ are not precise enough for reliably predicting the rates of B_s decays

decay mode	experimental BR	decay mode	predicted BR
$B^- \rightarrow D^{*0} \pi^-$	$(4.6 \pm 0.4) \times 10^{-3}$	$\overline{B}^0 \to D_s^* K^-$	$(1.7 \pm 3.8) \times 10^{-4}$
$\overline{B}^0 \to D^{*0} \pi^0$	$(2.7 \pm 0.5) \times 10^{-4}$	$\overline{B}^0 \to D^{*0} \overline{K}^0$	$(3.8 \pm 8.1) \times 10^{-5}$
$\overline{B}^0 \to D^{*+} \pi^-$	$(2.76 \pm 0.21) \times 10^{-3}$	$\bar{B}^0_s \to D^{*0} \overline{K}^0$	$(7.7 \pm 16) \times 10^{-4}$
$\overline{B}^0 \to D^{*+} K^-$	$2.0\pm0.5\times10^{-4}$	$\bar{B}^0_s \rightarrow D^{*0} \pi^0$	$(4.6 \pm 10.2) \times 10^{-6}$
$B^- \rightarrow D^{*0} K^-$	$(3.6 \pm 1.0) \times 10^{-4}$	$\bar{B}^0_s \rightarrow D^{*+}\pi^-$	$(9.3 \pm 20.4) \times 10^{-6}$
		$\bar{B}^0_s \to D^{*+}_s K^-$	$(2.8 \pm 1.3) \times 10^{-4}$

(for $B \rightarrow D^* \rho(K^*)$ the three helicity amplitudes need to be determined for each decay mode)

Conclusions and perspectives

SU(3) decomposition is a powerful method to classify and evaluate non leptonic decay amplitudes

- independent of hadronic models
- all dynamical information encoded
- based on experimental data

the huge amount of measurements collected at the B factories can be fully exploited to make predictions for B_s

systematic numerical improvement following the improvements in the accuracy of B measurements

- all the amplitudes have to be considered on the same basis - no physical content is included in the decomposition (amplitude democracy)

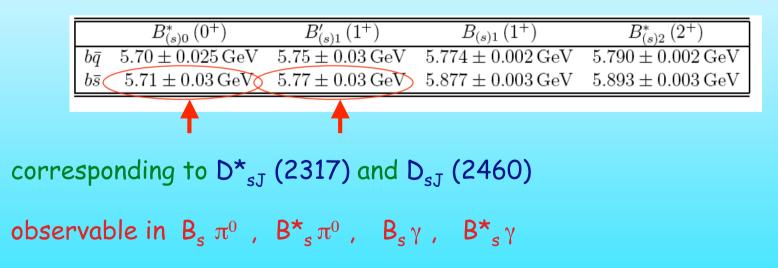
Conclusions and perspectives

However, as soon as the number of independent amplitudes increases, data can be * not sufficient to determine them $(B_{c} \rightarrow PP)$

In that case, the SU(3) approach could be complemented by arguments about the amplitude hierarchy, paying the price of degraded predictivity and numerical accuracy

As for direct theoretical evaluation

- old fashioned methods not always enough accurate
- at present there is not a general approach valid for all the situations (QCDF, PQCD, SCET, QCDSR applied in selected cases) determinations based on SU(3) complementary tool (-> Nir's talk)


B B is a natural sector for applications, important for the elaboration of the physics programmes at the new experiments

Addendum (not related to non leptonic B_s decays)

The way of using existing data to make predictions for the (bq) - (bs) sectors invoking QCD symmetries is not restricted to B_s non leptonic decay amplitudes

Example: masses and strong decay widths of orbitally excited beauty mesons input: charm data and HQET&chiral symmetry + $1/m_{\odot}$ corrections

masses:

strong decay widths

Mode	$\Gamma({ m MeV})$	BR	Mode	$\Gamma({ m MeV})$	BR
$B_2^{*0} \rightarrow B^+ \pi^-$	20 ± 5	0.34	$B_{s2}^{*0} \rightarrow B^+ K^-$	4 ± 1	0.37
$B_2^{*0} \rightarrow B^0 \pi^0$	10.0 ± 2.3	0.17	$B_{s2}^{*0} \rightarrow B^0 K^0$	4 ± 1	0.34
$B_2^{*0} \to B^{*+} \pi^-$	18 ± 4	0.32	$B_{s2}^{*0} \rightarrow B^{*+}K^-$	1.7 ± 0.4	0.15
$\bar{B_2^{*0}} \to B^{*0} \pi^0$	9.3 ± 2.2	0.16	$B_{s2}^{*0} \to B^{*0} K^0$	1.5 ± 0.4	0.13
B_2^{*0}	57.3 ± 13.5		B_{s2}^{*0}	11.3 ± 2.6	
$B_1^0 \rightarrow B^{*+} \pi^-$	28 ± 6	0.66	$B^0_{s1} \rightarrow B^{*+}K^-$	1.9 ± 0.5	0.54
$B_1^0 \rightarrow B^{*0} \pi^0$	14.5 ± 3.2	0.34	$B^0_{s1} \rightarrow B^{*0} K^0$	1.6 ± 0.4	0.46
B_{1}^{0}	43 ± 10		B^0_{s1}	3.5 ± 1.0	

(De Fazio, Ferrandes et al., 05)

useful information for the physics programmes at LHC and Tevatron