

Institute of Nuclear Physics NCSR "Demokritos", Athens

Introducing New Physics

- Introducing SUSY: significant increase in Br
- R-parity violating models in MSSM (with B non-conservation)
- Exotic (vector-like) quark

FCNC decay	Br in SM	Br in SUSY	Br in R-parity violation	Exotic quark	Exp. limits (95% CL)
$t \rightarrow \gamma q$	5 10 -13	< <u>10 - 7</u>	<10 -5	<10 -5	< 0.003 (HERA)
$t \rightarrow Zq$	<i>1.3 10 -13</i>	< <mark>10 -</mark> 8	<10 -4	<10 ⁻²	< 0.08 (LEP2)
$t \rightarrow g q$	<i>5 10 -11</i>	<10 -6	<10 - 3	< 5 10 ⁻⁴	< 0.29 (CDF)

t t are produced at a rate ≈10⁶/year at 10³³/cm²/s → FCNC Br might reach a detectable level

ANY OBSERVATION AT LHC WILL BE A SIGNAL OF NEW PHYSICS

Relevant Backgrounds

On t $\overline{t} \rightarrow Zq$ Wb signal:

INFN

_				
	Process	σ (pb)	comments	σ×Br (pb)
	$t^{-}t \rightarrow WbWb$	830	LO+NLO+NNLO	
	WW →2I	~100	NLO, CTEO	4.9
	$Z+jets \rightarrow 2l+jets$	12,528	Po=20 PPEr	830
	ZW →3I	~19.5	NDTEQ	0.3
	$ZZ \rightarrow 4I$	1.247	$eX, P_0=20 \text{ GeV}$	0.009
)n	Process $t^{-}t \rightarrow WbWb$ $WW \rightarrow 2l$ $Z^{+}jets \rightarrow 2l^{+}jets$ $ZW \rightarrow 3l$ $ZZ \rightarrow 4l$ $t^{-}t \rightarrow YqWb signal:$ $t^{-}t \rightarrow WbWb$ $W^{+}c^{-}c \rightarrow VbWb$ $W^{+}c^{-}s + VbWb$	PYTH		
	t [−] t → WbWb	NI .30	LO+NLO+NNLO	41
	W+c-c-	1079	M(c ⁻ c) > 2m _c	239.7
	WHLEENEETS	294	M(b ⁻ b) > 2m _b	65.3
	$\gamma \rightarrow l + \gamma$	56.21	Po=20 GeV, CTEQ	12.5
	WW →2I	~100	NLO, CTEQ	4.9
	Ζ+γ → 2 Ι +γ	46	P ₀ =20 GeV	3.0

Leonardo Benucci, Top FCNC: preliminary studies in CMS

FLAVOUR IN THE ERA OF THE LHC - Cern Workshop, 7th-10th November 2005

A study for selection strategy

We present a preliminary study at Generator Level:

- \blacktriangleright identify quarks leptons and γ by their MC code
- build real particle as W, Z and t

 \blacktriangleright analyze kinematical (p_T, η ,etc.) and geometrical (ΔR , angles, etc) variables for signal and background

- define cuts in order to reject background
- estimate efficiencies of selections

Afterwards, efficiencies at generator level have to be convoluted with effects from detector simulation (reconstruction, b-tagging, misidentification etc.) Actually:

estimate number of signal and background events for a given integrated luminosity

derive a Br(FCNC) upper limit

S and B are shown together, normalized to the same number Rescaling for x-sections is performed only AFTER selection

Z reconstruction

 \blacktriangleright cut events with leptons outside CMS acceptance : $|\eta| < 2.4$

 $> p_{T}(I)$ cut can be quite soft

INFN

> cut on $\Delta R(I+I-)$ can be useful: Z and W in background are produced back-to-back, so $\Delta R(I+I-)$ is shifted to higher values

	Circulatt	Deletitie musta
	Signal eff.	Relative purity
Before ∆R(vl) cut	89%	1
After ∆R(vI) cut	53%	3.1

a cut on invariant mass 91.19±10 GeV results in a reduction of continuous background down to 3%

Proposed strategy:

> take two isolated, opposite signed and same flavou leptons cut $p_T(l) > 10$ (for e), 20 (for μ) GeV/c,

|η| < 2.4

> cut ∆R(l+l-) < 2.0-2.5
 > cut on Z mass window

W reconstruction

> cut events with leptons outside CMS acceptance : $|\eta| < 2.4$

- > missing $E_{T}(I)$ not less than 25 GeV to reduce ZZ and Zjets
- > upper cut to missing $E_T(I)$ cannot be performed
- > cut on $\Delta R(vI)$ less effective wrt Z case

INFN

1 19	1961 1962	
	Signal eff.	Relative purity
Before ∆R(vl) cut	79%	1
After ∆R(vl) cut	55%	1.8

- skip leptons used for Z
- choose MET > 25-30 GeV
- > cut ∆R(I v) < 2.3</p>

<u>N.B.</u> $p_z(v)$ has two solutions, best solution has to be investigated case by case

Light and b jet identification

<u>b jet</u>:

- >contribution to b spectrum mostly from ttbar
 background
- cut on p_T (b-jet) to reject others backgrounds
- > apply b-tagging algorithm (as secondary vertex, impact parameter etc.)
- > counting b jets can be very effective

Light jet:

>even at parton level, there is a significant fraction of light jets in all sample

> in real life, things are much more complicated (direct production, ISR, gluon splitting etc.)

counting not-b jets can be very effective

> cut on p_{T} (light-jet) has to be high

Final efficiency selection

8 838 859				233 033	8
Selections	SIGNAL	ttbar	ZZ	ZW	WW
Z selection	0.44	0.03	0.25	0.25	0.40
x W selection	0.15	0.01875	0.025	0.052	0.024
x b selection	0.14	0.01725	0.0005	0	0
x q selection	0.1151	17 10 -5	0.0001	0	0

Even without rescaling for x-sections, we see that ttbar is the only relevant background

Introducing CMS simulation

Full/Fast simulations tool are under development

reconstruct tracks using combinatorial Track-finder
 identify isolated muons and electrons
 match tracks with clusters in ECAL
 <u>a lepton reconstruction efficiency is introduced</u>

build jets using an Iterative Cone Algorithm
 implement a b-tag algorithm (Combined BTag)
 <u>a b-tagging efficiency and a mis-tagging are introduced</u>

➢evaluate missing E_T from jets in calorimeters
→ missing E_T has a finite resolutions

Fast simulation package includes Pile-up tuning for high luminosity studies

Reconstruction Efficiency

Lepton reconstruction :

INFN

> efficiency for μ is high (90-95%, see e.g. CMS Note 2001-054)

> for e, many parameters have to be optimized (E/p, E_h/E_e , γ conversions, match between TK and ECAL etc.): ~80% in preliminary studies

Jet reconstruction :

b-tagging capabilities significantly reduce efficiency: 40-50% in 100 GeV region if we want to contain mis-tagging under 2% (CMS Note 2002-046)

Trigger efficiency :

very high (99% in CMS Note 2001-001)

High luminosity effects :

Pile-up rises to 23 evs at 10³⁴ cm⁻²s⁻¹ First studies with this scenario seem promising (no extra tracks or efficiency decrease)

Expected signal efficiency	3-5%
Expected surviving t \overline{t} events @ 100 fb ⁻¹	220÷310

Estimated B	Br _{FCNC} sensit	ivity				
An evidence for a $t \rightarrow Zq$ can be claimed at 5σ (99% CL) if: $S/J(S+B) \rightarrow 5$						
An FCNC signal with branching ratio Br _{UPPER} (FCNC) is given by:						
S = σ (t ⁻ t) Br(W \rightarrow vI) Br(Z \rightarrow II) * 2 * $\int \mathcal{L}dt$ * ϵ * Br _{UPPER} (FCNC)						
with $\int \mathcal{L}dt$ integrated luminosity and ϵ selection efficiency						
Expected signal efficiency: 3-	5% 10 fb ⁻¹	100 fb ⁻¹				
Expected t \overline{t} events	22÷31	220÷310				
Expected S	39÷43	88÷101				
Expected Br _{UPPER} (FCNC)	(5.3 ÷11.4) 10 ⁻⁴	(2.0 ÷4.1) 10 ⁻⁴				

significant improvement to existent limit - close to exotic models predictions

Conclusion and outlook

Two groups are working on top FCNC inside CMS community Parallel work is performed, analyzing both $t \rightarrow qZ$ and $t \rightarrow q\gamma$ signal. Fast and full simulations results are regularly compared.

At the present, quite promising results:

large statistic of signal and background is under production
 signal is clearly understood and quite clean selections are defined
 nice agreement in full/fast comparison in most variables (p_T,η, cos etc.)

To do in the very next future:

several optimization needed: b-tagging algorithms, light jet mistagging etc.

increase statistic as much as possible to approach to a HL environment

include study of effect of systematics uncertainties (pile-up, UE, jet fragmentation, PDF etc, see CMS Note 2005-013)

> include full simulation in all analyses

CMS official results with full simulation and systematics will be ready by April 2006

...Intensive work is ongoing!