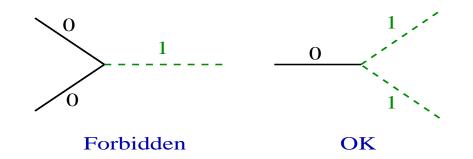
Theories with Extra Dimensions and Flavor Physics

Gustavo Burdman

University of São Paulo

Flavor Physics in the LHC Era, CERN 7-11/11/2005

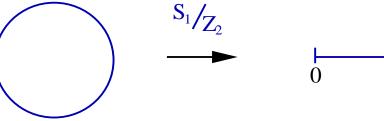
Outline


- Why ED ? The hierarchy problem.
- What kind of ED ? UED and WED.
- Flavor and UED
- Flavor and WED
- Conclusions/Outlook

Extra Dimensions and the Hierarchy Problem

- Large Extra Dimensions:
 - Only gravity propagates in the bulk.
 - $\Lambda \simeq \text{TeV}$ is the fundamental scale.
 - Compactification scale 1/R can be large ($\mathcal{O}(0.1)$ mm)
- Universal Extra Dimensions (UED):
 - All fields propagate in the bulk.
 - $1/R \lesssim$ TeV.
 - Cutoff $\Lambda \simeq 10$'s TeV.
- Warped Extra Dimensions (WED):
 - Original Randall-Sundrum: Gravity is localized in AdS_5 .
 - Fundamental scale is M_P .
 - Weak scale generated by the AdS_5 metric if we live at κL from M_P .
 - Model building \Rightarrow "bulk life".

Universal Extra Dimensions


- If some SM fields propagate in the bulk $\Rightarrow 1/R \gtrsim 1$ TeV.
- But if we assume all fields can propagate in the extra dimensions.
 What is the allowed R?
- Momentum conservation in the extra dimensions $\Rightarrow KK-number conservation E.g.$

 \Rightarrow KK excitations must be pair produced, direct bounds on 1/R are lower.

Universal Extra Dimensions

Orbifold Compactification: Allows to have chiral fermions

It breaks KK-number → KK-parity

 \Rightarrow Lightest KK Particle (LKP) is stable \rightarrow Dark Matter candidate

Direct and EW constraints:

 $1/R \gtrsim 300 \text{ GeV}$ for 5D $1/R \gtrsim (400-600) \text{ GeV}$ for 6D

 πR

UED Phenomenology

- But, almost degenerate KK levels \Rightarrow little energy release:
 E.g. $q\bar{q} \rightarrow Q_1Q_1 \rightarrow Z_1Z_1 + E_T \rightarrow 4\ell + E_T$ (Cheng, Matchev, Schmaltz '02).
- Decays to Second KK Level:
 - They couple to 2 zero modes through brane couplings (loop generated). (Datta, Kong, Matchev '05)
 - Signals different in 5D from 6D (Burdman, Dobrescu, Pontón '05)
 - At the LHC is possible to produce 2nd KK level gluon in s-channel.

Flavor Physics in UED

If we consider the SM in the bulk in d extra dimensions

$$\mathcal{L} = \mathcal{L}_F + (D_M \Phi(x, y))^{\dagger} D^M \Phi(x, y) + \frac{1}{\Lambda^{d/2}} \bar{\Psi}(x, y) Y \Phi(x, y) \Psi(x, y)$$

and *Y* is the only source of flavor violation $\Rightarrow MFV$. Here Λ is the UV cutoff, and $\Lambda R \gg 1$.

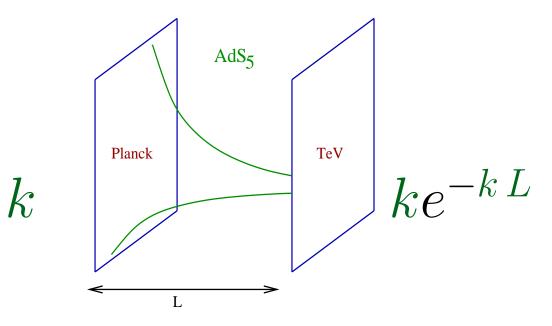
- In this scenario, only flavor physics effects are generated by loops of KK modes in flavor observables: B, D K rare decays and mixing. (Buras, Spranger, Poschenrieder, Weiler '03)
- There is no high p_T signal for flavor

Flavor Physics in UED

But this is not general. Higher dimensional operators \Rightarrow FCNC

For instance

$$\int d^4x \, dy \left(\frac{1}{\Lambda^3}\right) \left(\bar{\Psi}(x,y)\Gamma_M\Psi(x,y)\right) \left(\bar{\Psi}(x,y)\Gamma^M\Psi(x,y)\right)$$
$$\rightarrow \int d^4x \left(\frac{1}{\Lambda^2}\right) \left(\frac{1}{\Lambda R}\right) \left(\bar{\psi}^{(n)}\gamma_\mu\psi^{(n)}\right) \left(\bar{\psi}^{(n)}\gamma^\mu\psi^{(n)}\right)$$


 \Rightarrow suppressed FCNC.

But $\Lambda R \simeq 10$, and if $R \simeq 1$ TeV, FCNC's are not suppressed enough.

 \Rightarrow UV couplings could result in FCNC effects.

Warped Extra Dimensions

One compact extra dimension. Non-trivial metric induces small energy scale from Planck scale (L. Randall, R. Sundrum '99).

Geometry of extra dimension generates hierarchy exponentially

 $\Lambda_{\rm TeV} \sim M_{\rm Planck} \, e^{-k \, L}$

with k the curvature

Warped Extra Dimensions

- In original proposal, only gravity propagates in 5D bulk.
- RS is a solution of the hierarchy problem. But origin of EWSB? And flavor ? ...
- Allowing gauge fields and matter to propagate in the bulk opens many possibilities: models of EWSB, GUTs, <u>flavor</u>, ...
- **J** The 5D mass of a bulk fermion = *localization* of zero-mode.
- If Higgs remains on TeV brane: Fermions localized toward TeV brane are more massive Fermions localized toward the Planck brane are lighter

 \rightarrow Fermion Geography

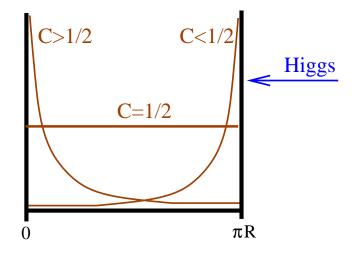
WED and Flavor Physics

Fermion Fields in the bulk: 5D fermion field KK decomposition

$$\Psi_{L,R}(x,y) = \frac{1}{\sqrt{2\pi R}} \sum_{n=0} \psi_n^{L,R}(x) e^{2\kappa|y|} f_n^{L,R}(y)$$

9 5D fermion bulk mass term \longrightarrow localization of fermion fields:

$$S_f = \int d^4x \, dy \, \sqrt{-g} \left\{ \dots - c \, \kappa \bar{\Psi}(x, y) \Psi(x, y) \right\} \, dy$$

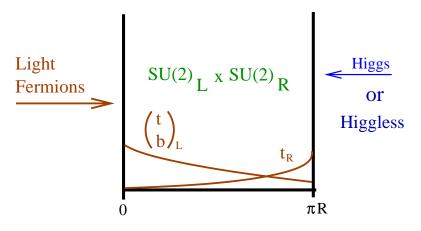

with $c \simeq O(1)$.

| => Fermion zero-modes can be localized by choosing c :

$$f_0^{R,L}(y) = \sqrt{\frac{\kappa \pi R (1 \pm 2c)}{e^{\kappa \pi R (1 \pm 2c)} - 1}} e^{\pm c \kappa y}$$

WED and Flavor Physics

 \bigcirc O(1) flavor breaking in bulk can generate fermion mass hierarchy:



Fermions localized toward the TeV brane can have larger Yukawas, Those localized toward the Planck brane have highly suppressed ones.

■ But fermions at ~ πR => strong couplings to 1st KK gauge bosons! E.g: 3rd generation quarks might have large couplings → flavor violation.

WED and Flavor Physics

Several possibilities for model building:

- Higgs or Higgless (BC breaking)
- Iight fermions on Planck brane or off (reduces S)
- Third generation remains a challenge

Agashe, Delgado, Sundrum '03; Csaki, Grojean, Murayama, Terning '03; Barbieri, Pomarol, Rattazzi '03; Burdman, Nomura '03; Cacciapaglia, Csaki, Grojean, Terning '04, '05; ···,

WED Flavor Signals

Two type of flavor effects:

- **FCNC** couplings of the Z:
 - Interesting low energy flavor signals. E.g. $b \rightarrow s\ell^+\ell^-$ (Burdman, Nomura '03, Agashe, Perez, Soni '04)
 - Deviations in $\overline{t_L} t_L Z$ and $\overline{t_L} b_L W$ are $\mathcal{O}(\text{few}\%)$.
 - Deviations in $\bar{t_R}t_R Z$ could be $\mathcal{O}(1)$.
- FCNC couplings of KK gauge bosons (e.g. KK gluons):
 - E.g. FCNC coupling of the 1st KK gluon $G^{(1)}t\bar{c}$.
 - Effects in non-leptonic *B* decays and CP Asymmetries (Burdman '03)
 - \bullet \Rightarrow Potentially large effect in single-top production at the LHC
 - Sinematics is very different than the SM single-top.
 - Also anomaly in the angular distribution in $b\overline{b}$.

WED Flavor Signals

A possible strategy

- Obtain bounds on (or fits of) c_L and c_R as well as D_{bs} from the $b \rightarrow s\ell^+\ell^-$ effect and non-leptonic *B* decays and asymmetries.
- Compute single top production through s-channel KK gluon for these values of c_L and c_R and U_{tc} .
- Assumptions:
 - 1. Up and Down rotations similar and $\simeq V_{CKM}$
 - 2. CKM comes mostly from down sector (U_{tc} negligible)
 - 3. CKM comes mostly from down sector (D_{bs} negligible)
- (Caveat: RH rotations are not affected by CKM considerations)
- Is the signal observable ?

Summary

- **JED**: Is a case of MFV if we neglect higher dimensional operators contributing to FCNC. (Model building for flavor at Λ would surely change this.)
- MED: Model of flavor. Signals for flavor both in low and high energies. A case of NMFVness
 - Choose scenarios and constraint parameters from low energy (e.g *B* decays, CPV, etc.)
 - Correlate with single top production at LHC.