Future Prospects for K Decay Experiments

L. Littenberg BNL

Outline

- What should we be doing?
- Is (American) history any guide?
- The leading opportunities

$$- \mathsf{K}^+ \rightarrow \pi^+ \nu \overline{\nu}$$

$$- K_{L} \rightarrow \pi^{0} \nu \overline{\nu} \\ - K_{I} \rightarrow \pi^{0} \ell^{+} \ell^{-}$$

Conclusions

What should we be doing?

- $K_L \rightarrow \pi^0 v \overline{v} \& K^+ \rightarrow \pi^+ v \overline{v}$
 - NP governed by a single effective operator
 - Determine the IP & modulus of any NP contribution
 - Can be calculated in almost any model
 - Sensitive to high mass scales
- $K_L \rightarrow \pi^0 e^+ e^- \& K_L \rightarrow \pi^0 \mu^+ \mu^-$
 - In SM, same information as $K_L \rightarrow \pi^0 v \bar{v}$
 - NP can contribute to >1 operator: richer but harder to interpret
 - Recent developments show these more accessible!
- LFV processes, T-violation, medium rare
- Some pion decays

BNL AGS E949 K⁺ $\rightarrow \pi^+ \nu \overline{\nu}$

FNAL CKM K⁺ $\rightarrow \pi^+ \nu \overline{\nu}$ Experiment

FNAL CKM K⁺ $\rightarrow \pi^+ \nu \overline{\nu}$ Experiment

FNAL P940 K⁺ $\rightarrow \pi^+ \nu \overline{\nu}$

KAMI $K_L \rightarrow \pi^0 v \overline{v}$ at FNAL

KAMI DETECTOR LAYOUT

KOPIO $K_{L} \rightarrow \pi^{0} v \overline{v}$ at BNL

KOPIO $K_L \rightarrow \pi^0 v \overline{v}$ at BNL

Experimental considerations for $K^+{\rightarrow}\pi^+\nu\overline{\nu}$

- BR ~ 8 × 10⁻¹¹
- 3-body decay, only 1 visible
- π^+ common K decay product
- Backgrounds:
 - − K⁺→μ⁺ν(γ)
 - K⁺ $\rightarrow \pi^+ \pi^0$
 - $K^+n \rightarrow K^0p$; $K_L \rightarrow \pi^+ \ell^-\nu$, ℓ^- missed
 - Ke4
 - Beam (stopped-K configuration)
 - Beam π⁺ mis-ID as K⁺, then fakes K decay at rest
 - K⁺ decay in flight
 - 2 beam particles
 - Beam (in-flight)
 - Beam π^+ mis-ID as K⁺, then interacts
 - 2 beam particles

Solenoidal detector at the end of a stopped K⁺ beam

• Incoming 700MeV/c beam K⁺: identified by Č, WC, scintillator hodoscope (B4). Slowed down by BeO

Range Stack

`Target

• Incoming 700MeV/c beam K⁺: identified by Č, WC, scintillator hodoscope (B4). Slowed down by BeO

• K⁺ stops & decays at rest in scintillating fiber target – measure delay (2ns)

• Incoming 700MeV/c beam K⁺: identified by Č, WC, scintillator hodoscope (B4). Slowed down by BeO

• K⁺ stops & decays at rest in scintillating fiber target – measure delay (2ns)

Outgoing π⁺: verified by IC, VC, T counter. Momentum measured in UTC, energy & range in RS and target (1T magnetic field parallel to beam)

• Incoming 700MeV/c beam K⁺: identified by Č, WC, scintillator hodoscope (B4). Slowed down by BeO

• K⁺ stops & decays at rest in scintillating fiber target – measure delay (2ns)

Outgoing π⁺: verified by IC, VC, T counter. Momentum measured in UTC, energy & range in RS and target (1T magnetic field parallel to beam)

• π^+ stops & decays in RS – detect $\pi^+ \rightarrow \mu^+$ $\rightarrow e^+$ chain

• Photons vetoed hermetically in BV-BVL, RS, EC, CO, USPV, DSPV

E787/949 Analysis Strategy

Signal region "the BOX"

PNN1: $p_{\pi} > p(K^+ \rightarrow \pi^+ \pi^0) = 205 MeV/c$

Background sources

Identify *a priori.* at least 2 independent cuts to target each background:

- K⁺ $\rightarrow \pi^{+}\pi^{0}$
- muon background (K⁺ \rightarrow μ + ν (γ),...)
- Beam background
- etc.

Analysis Strategy

- Blind Analysis
- Measure background level with real data
- To avoid bias,
- 1/3 of data \Rightarrow cut development
- 2/3 of data \Rightarrow background measurement
- Characterize backgrounds using background functions
- Likelihood Analysis

E787/949 Events

Combined E787/949 Result

$$BR(K^{+} \to \pi^{+} \nu \overline{\nu}) = (1.47^{+1.30}_{-0.89}) \times 10^{-10}$$

(68% CL interval)

E787 result:

$$BR(K^+ \to \pi^+ \nu \overline{\nu}) = (1.57^{+1.75}_{-0.82}) \times 10^{-10}$$

	E787		E949	
Stopped K ⁺ (N_K)	$5.9 imes10^{12}$		$1.8 imes 10^{12}$	
Total Acceptance	0.0020 ± 0.0002		0.0022 ± 0.0002	
S.E.S.	$0.8 imes10^{-10}$		2.6×10^{-10}	
Total Background	0.14 ± 0.05		0.30 ± 0.03	
Candidate	E787A	E787C	E949A	
S_i/b_i	50	7	0.9	
$W_i \equiv \frac{S_i}{S_i + b_i}$	0.98	0.88	0.48	

Status & prospects for E949

- E949 detector worked well
- Obtained ~2/3 sensitivity of E787 in 12 weeks (1/3 pnn1+1/3 pnn2)
- Found one new pnn1 candidate
- pnn2 analysis currently in progress
 looks promising
- AGS & beamline problems cost a factor ~2 in sensitivity/hour
- DOE cut off experiment after 12 of 60 promised weeks

J-PARC K⁺ $\rightarrow \pi^+ \nu \overline{\nu}$ LOI

- Stopped K⁺ experiment
- Builds on E787/949 experience
 - Lower energy separated beam
 - Higher B spectrometer
 - More compact apparatus
 - Better resolution
 - Finer segmentation
 - Improved γ veto (crystal barrel)
- Aims for 50 events
- Not an early experiment for J-PARC
 - Needs longer spill than planned range stack
 - beamline
 - place on the floor
 - \$ for detector

P326 (NA48/3) K⁺→π⁺νν

P326 Technique

- Detection in-flight
- High energy (75 GeV/c) unseparated beam (800 MHz!)
 - Careful design to keep halo to ~7MHz
 - Measure all beam tracks ("Gigatracker")
 - Differential Cerenkov ("CEDAR") for K ID
- Redundant measurement of pion momentum
 - Two-stage magnetic spectrometer (straws in vacuum)
 - Require large missing momentum
- Redundant pion I.D.
 - Magnetized hadron calorimeter ("MAMUD" + RICH)
- (Almost) hermetic photon veto system
 - NA48 liquid Krypton calorimeter
 - Small angle charged & neutral vetoes (beam bent out of the way)
 - Wide-angle frame anti's

 $π^+$ momentum cut requires a huge momentum mismeasurement to mistake a beam $π^+$ for a final state particle (75→35 GeV/c). Also guarantees large missing momentum, *e.g.* so that there's plenty of γ energy from *K*⁺→ $π^+π^0$

Plan for P326

- 2005
 - Gigatracker R&D
 - Vacuum tests
 - Technical design & cost estimate
- 2006
 - Detector tests in present beam
- Construction & installation 2007-8
 - Construct new beamline
 - Construct & install detectors
- 2009-10
 - Data taking
- Expect ~80 events with S:B ~ 8:1

Stopped vs In-flight K⁺

	E949 (prop.)	P326
beam/spill	25M	2500M
K ⁺ /spill	30M	125M
purity	0.8	0.05
duty factor	4.1/6.4	4.8/16.8
inst. beam rate	7.2MHz	800MHz
'decay' factor	26%	10%
DKs/clock-sec	0.81M	0.74M
DAQ/veto livetime	1/1.7	1/1.7
eff. DK/clock-sec	0.48M	0.44M
acceptance	0.3%	17%
acc. DK/clock-sec	1400	74000

Stopped vs In-flight K⁺

How far can stopped exp. be pushed?

	E949 (prop.)	P326	J-PARC
beam/spill	25M	2500M	41M
K⁺/spill	30M	125M	31M
purity	0.8	0.05	0.75
duty factor	4.1s/6.4s	4.8s/16.8s	1.7s/4.4s
inst. beam rate	7.2MHz	800MHz	24MHz
'decay' factor	26%	10%	40%
DKs/clock-sec	0.81M	0.74M	2.8M
DAQ/veto livetime	1/1.7	1/1.7	1/1.9
eff. DK/clock-sec	0.48M	0.44M	1.5M
acceptance	0.3%	17%	0.6%
acc. DK/clock-sec	1400	74000	8800

How to pursue $K^+ \rightarrow \pi^+ \nu \overline{\nu}?$

- In-flight has the "appeal of the new"
 - The only way to get >100 events
 - But requires 11 O.M. leap!
 - Watch out for tails, acceptance losses, the unexpected
- Stopping experiment very well understood
 - Technique shown to have sufficient S/B
 - Any further improvements can increase acceptance
 - Note acceptance of 787/949 is ~0.002-0.003
 - Plenty of room for improvement!
 - Trick is to increase the beam rate w/o losing acceptance
 - Could *really know* if 50-100 events possible
 - But so far very little support for such an experiment

The Challenge of $K_L \rightarrow \pi^0 \nu \overline{\nu}$

- $B(K_L \rightarrow \pi^0 v \overline{v}) \sim 3 \times 10^{-11}$, need intense flux of K's
 - rates inevitably rather high
 - hard to minimize both random vetoing & veto-blindness
- Kinematic signature weak (2 particles undetectable)
- Backgrounds with π^0 up to 10¹⁰ times larger than signal
- Veto inefficiency on extra particles, both charged particles and photons, must be ≤10⁻⁴
- Self-vetoing is a problem
 - shower spreading makes it hard to maximize both signal efficiency and veto power
- Huge flux of neutrons in beam
 - can make π^0 off residual gas requires high vacuum
 - halo must be tiny
 - hermeticity requires photon veto in this beam
- Need convincing measurement of background

1st dedicated $K_L \rightarrow \pi^0 v \bar{v}$ experiment - E391a

- KEK 12 GeV PS
- 4° "pencil" beam
- <p_K> ~ 2 GeV/c
- Csl calorimeter

Pencil Beam

5 stages of collimators made of heavy metal (tungsten)

2 stages of sweeping magnets

Thermal neutron absorber

Pb/Be plug for control of γ /neutron flux

Fine alignment using telescope

GEANT3 M.C. agrees well with the measurements

7 Nov 05

2γ analysis

E391a Result from 10% of Run I

- No events observed/expected background of 0.03 ± 0.01 events (mainly K π 2)
- $1.14 \times 10^9 \text{ K}_{\text{L}}$ decay, 0.0073 acceptance \Rightarrow s.e.s of 1.17×10^{-7}
- $B(K_L \rightarrow \pi^0 \nu \bar{\nu}) \le 2.86 \times 10^{-7} @ 90\% CL (c.f. 5.9 \times 10^{-7} from KTeV)$

Better quality of data (online plots)

E391a status & prospects

- First physics run Feb-June 2004
 - 2.2×10¹² 12 GeV POT, 50% duty factor
 - $5 \times 10^5 \text{ K}_{\text{L}}/\text{pulse}$
 - Detector worked well
 - Nominal s.e.s. 4×10⁻¹⁰
 - But acceptance ~ 15× lower than in proposal (0.0073)
 - first sight of the enemy
 - Halo neutrons, self-vetoing, etc.
 - − Analysis of 10% of data \Rightarrow B(K_L $\rightarrow \pi^0 v \overline{v}$)<2.86 ×10⁻⁷
- Run II, Feb-March 2005
 - Many problems fixed, 60% of Run 1
- Run III, Nov-Dec 2005, starting now

JPARC Phase I Beamlines

KEK-PS to J-PARC

- 10¹⁴ interacting 30 GeV protons/cycle, 5 μ sr beamline @ 16°
- 22MHz K_L @ 20m, $<p_{K}> = 2.1$ GeV/c, 9%/5m decay
- 4% acceptance
- 23 events in 3 Snowmass years (competition from v)
- S:B~1:1 (optimization studies in progress)

Step by step at JPARC

- "Step by step" approach, learning as they go
- Different beam angles, lengths
- Larger detector
- Eventual goal few 100 evts

Tgt ∠ z-det	Beam size	K _∟ flux (MHz)	Decay prob	Decay rate
16° 20m	10cm	27MHz	25%	6.8MHz
5° 50m	10cm	63MHz	11%	6.9MHz
8° 70m	15cm	28MHz	14%	3.9MHz

$K_L \rightarrow \pi^0 v \overline{v}$ Experiment

$K_L \rightarrow \pi^0 v \overline{v}$ Experiment

$K_L \rightarrow \pi^0 v \overline{v}$ Experiment

In the K_LCoM

• Bckgnd mainly in discrete areas

• Obvious for $K_L \rightarrow \bigotimes_{\Phi} \pi^0 \pi^0$ "even"

• But even "odd" case not ubiquitous (k

• $K\pi3$ infests slightly different area

• Even after all bckgrnds160 accounted for, still some clear space for signal ¹⁴⁰

• Can get factor 50-100

In the K_LCoM

• Bckgnd mainly in discrete areas

• Obvious for $K_L \rightarrow \bigotimes_{\mathfrak{V}} \pi^0 \pi^0$ "even"

• But even "odd" case not ubiquitous

• K π 3 infests slightly^{LLJ} different area

• Even after all bckgrnds160 accounted for, still some clear space for signal ¹⁴⁰

• Can get factor 50-100

KOPIO Technique

- High intensity micro-bunched beam from the AGS
- Measure everything! (energy, position, angle, time)
- Eliminate extra charged particles or photons
 - KOPIO: π^0 inefficiency < 10⁻⁸
- Suppress backgrounds
 - Predict backgrounds from data:dual cuts
 - Use "blind" analysis techniques
 - Test predictions "outside the box"
- Weight candidate events with S/N likelihood function

Is KOPIO completely dead?

- AGS E926 is certainly completely dead
- But we asked whether Fermilab might be interested
 - Would use 8 GeV proton beam from Booster
 - Answer not immediately, but maybe later
 - Agreed to have accelerator physicists help
 - Some studies were done

First Surprise

• Useful K flux not much impacted!

How to get the protons

Send 8 GeV protons from the Booster to the Accumlator (need new line)

Momentum stack Booster batches in Accumulator and debunch. Then microbunch at 26MHz on extraction (need slow extraction system, beam-line, etc.)

Dave McGinnis' Scenarios

- NUMI and 4/23 batches to KOPIO
 - Accelerator cost not including slow extraction ~10-12 M\$
 - Constraints
 - Cycle time 1.5 Seconds
 - C.O.D 6 mm
 - <u>Loss 550W</u>
 - Booster Notching 3 / 84 bunches
 - Improvement comes because notching is not needed for momentum stacking KOPIO beam
 - NUMI 12 batches @ 4.8e12 protons/batch
 - KOPIO 4.6e16protons/hr
- NUMI and 8/23 batches to KOPIO
 - Constraints
 - Cycle time 1.5 Seconds
 - C.O.D 6 mm
 - Loss 600 W
 - Booster Notching 2.4 / 84 bunches
 - Improvement comes because notching is not needed for momentum stacking KOPIO beam
 - NUMI 12 batches @ 4.8e12 protons/batch
 - KOPIO 9.2e16protons/hr

Second Surprise

From Mc Ginnis' Summary:

- To run NUMI and KOPIO at 4.6e16 protons/hour:
 - Decrease the closed orbit distortion by 40% from present
 - Decrease the notching loss by 43% from present
 - Increase the permitted loss in the Booster tunnel by 20% from present
 - KOPIO spill length 82% of cycle

KOPIO is VERY sensitive to duty factor (67% @ AGS)

Inst. K rate a little lower than at AGS

Bottom line - Sensitivity/hour = 93% of AGS

Third Surprise

- When E926 (KOPIO) proposed, asked for 3000 hours per year for three years.
 - That was thought aggressive but possible in the "AGS-2000" era
- When RSVP plan finally set, we were given 6240 hours over three years

– But not all at 100 TP, equivalent was 5684 hours

• Fermilab seems to assume ~6000 hours/year

Discovering/Constraining New Physics

Discovering/Constraining New Physics at FNAL

How many K's needed to see $K_L \rightarrow \pi^0 \mu^+ \mu^-$?

From thesis of M. Sadamoto Osaka, 1999 (KTeV) The number of K_L necessary to see $K_L \rightarrow \pi^0 \mu^+ \mu$

In order to discover the $K_L \rightarrow \pi^0 \mu^+ \mu^-$ decay, the number of the signal events must be significant by more than 3σ above the background. In this section, we will assume that the all the background sources are well understood and that the number of the background events is large enough so that the fluctuation can be treated as a Gaussian. This assumption leads to the following relation:

$$N_S > 3\sqrt{N_S + N_{BG}}$$
(7.2)

$$N_S = \#K_L \times Br(K_L \rightarrow \pi^0 \mu^+ \mu^-) \times \epsilon_{\pi^0 \mu^+ \mu^-}$$
(7.3)

$$N_{BG} = \#K_L \times Prob_{bg}, \qquad (7.4)$$

where N_S is the number of observed $K_L \to \pi^0 \mu^+ \mu^-$, $\#K_L$ is the number of K_L decays, N_{bg} is the number of observed background events, $\epsilon_{\pi^0 \mu^+ \mu^-}$ is the detector acceptance for $K_L \to \pi^0 \mu^+ \mu^-$, and $Prob_{bg}$ is the probability of a K_L to generate a background event, respectively. (If we use the same condition as in KTeV experiment, we can assume $\epsilon_{\pi^0 \mu^+ \mu^-} = 0.05$, $Prob_{bg} = 3.3 \times 10^{-12}$.)

Let us assume the following predicted numbers as described in Chapter 1,

$$Br(K_L \to \pi^0 \mu^+ \mu^-)_{CP_conserve} = 4.4 \times 10^{-12}$$

$$Br(K_L \to \pi^0 \mu^+ \mu^-)_{indirect} = 2.0 \times 10^{-13}.$$
(7.5)

To be conservative, the contribution of the direct CP violation is neglected at this time. By using Equation 7.2, we need more than $6.0 \times 10^{14} K_L$ decays to discover the $K_L \to \pi^0 \mu^+ \mu^-$ decay. This corresponds to about 2200 times the K_L decays in KTeV experiment. If the effective cuts to reject $K_L \to \mu^+ \mu^- \gamma \gamma$ with a high statistics study, it will decrease the minimum number of K_L decays to find $K_L \to \pi^0 \mu^+ \mu^-$.

How many K's needed?

If we regard the indirect CP violating and CP conserving contributions as background, we can calculate the number of K_L decays required to detect the direct CP violation. At this time, we can assume $Prob_{bg} = 7.9 \times 10^{-12}$. For confirming the direct CP violating $K_L \rightarrow \pi^0 \mu^+ \mu^-$ with the branching ratio of 1.0×10^{-12} , we need more than $1.4 \times 10^{15} K_L$ decays.

Fermilab is planning KAMI experiment which is the next generation of KTeV experiment. KAMI plans to observe 5.6×10^{13} kaon decays for searching the direct CP violating phenomena. However, it is still a factor of 10 lower than the sensitibity to detect $K_L \rightarrow \pi^0 \mu^+ \mu^-$.

- In 1999, thought it would require two further generations of experiments to see $K_L \rightarrow \pi^0 \mu^+ \mu^-$ at $3\sigma (K_L \rightarrow \pi^0 e^+ e^- similar)$
- Also, most people thought in terms of measuring SM $\eta,$ so high precision needed
- Situation today is completely different

New Situation for $K_L \rightarrow \pi^0 \ell^+ \ell^-$

- Now that NA48 observed $K_S \rightarrow \pi^0 \ell^+ \ell^-$ at higher end of expectation
- & arguments for constructive interference between mixing & direct CP-violating components strong as ever
- SM expectation for $K_L \rightarrow \pi^0 \ell^+ \ell^-$ rather large:

$$- B(K_L \rightarrow \pi^0 e^+ e^-) = (4 \pm 1) \times 10^{-11}$$

- $B(K_L \rightarrow \pi^0 \mu^+ \mu^-) = (1.5 \pm 0.3) \times 10^{-11}$
- Compare with $K_L \rightarrow \gamma \gamma \ell^+ \ell^-$ background (worst one):

	K _L →π ⁰ e⁺e⁻ ('99)	K _L →π ⁰ μ⁺μ⁻ ('97)
KTeV s.e.s	10.4×10 ⁻¹¹	7.5×10 ⁻¹¹
K _L →γγℓ ⁺ ℓ ⁻ evts	0.99	0.37
$B(K_L \rightarrow \gamma \gamma \ell^+ \ell^-)_{effective}$	10.3×10 ⁻¹¹	2.8×10 ⁻¹¹
S:B	1:2.5	1:1.9

Motivation for $K_I \rightarrow \pi^0 \ell^+ \ell^-$

Add to this, now we are interested in bigger game than $Im\lambda_t$.

E.g., from Isidori, *et al*., hepph/0404127 \implies

• Take KaMI as example of a next-generation experiment with sensitivity to $K_L \rightarrow \pi^0 \mu^+ \mu^-$. In 3 years, KaMI would have reached a s.e.s of 4×10⁻¹³.

• In the example above, would collect 110 ± 13 signal events (with 70 events of background) compared with a SM expectation of 37 events.

• Similar sensitivity experiment possible for $K_L{\rightarrow}\pi^0 e^+e^-$

Conclusions

- K experiments extinct in US
 - State of the art in 4 of the 5 most interesting decays
 - Some data analysis continuing
 - Experiments could be mounted at FNAL (KOPIO?)
 - But K experiments seem low on DOE priority list
- Continuing $K \rightarrow \pi v \overline{v}$ program in Japan
- $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ proposal at CERN
- Could use a KOPIO-type $K_L \rightarrow \pi^0 v \overline{v}$ experiment
 - or at least one with photon pointing.
- $K_L \rightarrow \pi^0 \ell^+ \ell^-$ experiment(s) now seem very worthwhile
 - Could be done!
 - But no proposals yet