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INTRODUCTION

In a supersymmetric theory the most general lagrangian is:
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Already “known” from measurements

of the fermionic masses and mixing angles,

and the gauge interactions.
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The challenge is to determine

the soft breaking terms.

In particular, in the leptonic sector:
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How??

⋆ Non-accelerator physics:

• rare decays (µ→ eγ, τ → µγ...). Lepton Flavour Violating.

• electric dipole moments.Lepton flavour conserving, but CP.�

INDIRECT PROBES

⋆ Accelerator physics:

• mass splittings between sleptons.

• LFV production and decay of SUSY particles

• CP�� in the production and decay of SUSY particles.

DIRECT PROBES



⋆ Diferent signatures depending on which is the LSP,

• neutralino interaction∼ 1

M2
W

→ WIMP
→ See R̈uckl’s talk.

• axino interaction∼ 1

f2
P Q

→ Super-WIMP

• gravitino interaction ∼ 1

F
→ Super-WIMP

Not so thoroughly studied...

⋆ When the gravitino is the LSP, different arguments point to the
possibility that the NLSP has to be a RH stau.

⋆ There are two strategies to study LFV:

– LFV decay of (stopped) staus

– LFV production of staus



LFV decay of stopped staus

⋆ If the gravitino is the LSP, the NLSP can only decay
gravitionally into gravitinos⇒ very long lifetimes

⋆ NLSPs could be collected and studied in detail:

• LHC: O(104) charged sleptons

• e−e− LC: O(105 − 106) charged sleptons

⋆ In particular, one could studylepton flavour violating decays
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However...

⋆ In the LHC,ẽR, µ̃R andτ̃R would be produced.

⋆ In ae−e− linear collider, onlỹeR would be produced. A fraction of them

would decay intõτR, so both̃eR andτ̃R would be present in the sample.

If selectrons were also long lived
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Could be an important source of background!!

Other backgrounds:̃τR → τ ψ3/2 →{
τ− → e− ν̄e ντ BR≃ 18%
τ− → µ− ν̄µ ντ BR≃ 17%
τ− → π− ν̄τ BR≃ 11%

→ µ−ν̄µ BR≃ 100%



Analysis of backgrounds

WhetherẽR andµ̃R are also long lived depends on the mass
spectrum:

• If m2

τ̃R
−m2

µ̃R,ẽR
> mτ , then

µ̃R → τ̃R τ µ very fast

ẽR → τ̃R τ e very fast

The sample would consist just ofτ̃R. The backgrounds are
negligible.

Very favourable case for the detection of flavour violation.

• If m2

τ̃R
−m2

µ̃R,ẽR
< mτ , then

µ̃R → τ̃R ν̄τ νµ rather slow

ẽR → τ̃R ν̄τ νe very slow

The sample would consist of̃τR andẽR (perhaps alsõµR).

Backgrounds could be important.
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Analysis of backgrounds II: the case with LFV

LFV plays a crucial role in preparing a sample without important backgrounds.

• LFV induces a contribution to the mass splitting. When(m2

l̃R
)23/m1

>∼ mτ ,

the decaỹeR → τ̃R τ e becomes kinematically accessible.

• The LFV selectron decayẽR → τ̃R e e can be very efficient(this channel
is usually kinematical open)
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(
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)13
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)
Γ(ẽR → τ̃R τ e)

LFV plays a double role: it is not only
the object of our investigation, but also a
crucial ingredient for the success of it!!
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Prospects to observe LFV with stopped staus

⋆ If LFV exists in nature, backgrounds in this experiment would
be negligible⇒ all the electrons have to come from LFṼτR
decays.

⋆ If no electron is observed

• LHC: Nτ̃ (init.) = Nµ̃(init.) = Nẽ(init.) = 1000

(m2

l̃R
)13/m

2

1
<∼ 3 × 10−2 @ 90%c.l.

• e−e− LC: Nτ̃ (init.) = 0, Nµ̃(init.) = 0, Nẽ(init.) = 10000
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LFV production of staus

Future directions: abandon the requirement of stopped staus (in progress)

Example:At the e−e− Linear Collider, ifm
τ̃R

< m
ẽR

< m
χ̃0
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ẽ−R

χ0

@@

��

@@

��

χ0

χ0

e− τ±

e− τ±

τ̃∓R

τ̃∓R

e−R

e−R
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• four charged fermions in the final state • two charged fermions

• τ̃R’s positive or negative • at least onẽτR is negative

In both cases,two heavy ionizing tracks

BACKGROUNDS EXPECTED TO BE VERY SMALL



At the LHC or thee+e− linear collider, one would have
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ẽR

ẽR
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ẽR τ̃R
×

(m2
R)13

can be distinguished from
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CONCLUSIONS

⋆ In colliders it could be possible to probedirectly lepton flavour
violation, providing complementary information to the onefrom
rare decays.

⋆ In scenarios withstau NLSP, lepton flavour violation could be
observed cleanly in late decays, without important backgrounds.

⋆ It could be possible to probe LFV down to(m2

l̃R
)13/m

2

1
<∼ 3 × 10−2.


