Study of μ - τ conversion with high-intensity muon beams

Giovanni Marchiori Università di Pisa and I.N.F.N. *On behalf of the* BaBar *Pisa group*

$\mu\text{-}\tau$ and New Physics

- LFV = clear signal for beyond-SM physics
- Space for LFV in many SM extensions (e.g. slepton mixing in SUSY)
- Neutrino oscillations → clear evidence of LFV in neutral lepton sector

What about charged leptons?

- $\tau \mu/\tau$ -e LFV less constrained than μ -e at present
- We investigate $\mu \tau$ coupling by studing $\mu \tau$ conversions of high-intensity muon beams on an active (Si) target

Limits on μ - τ LFV

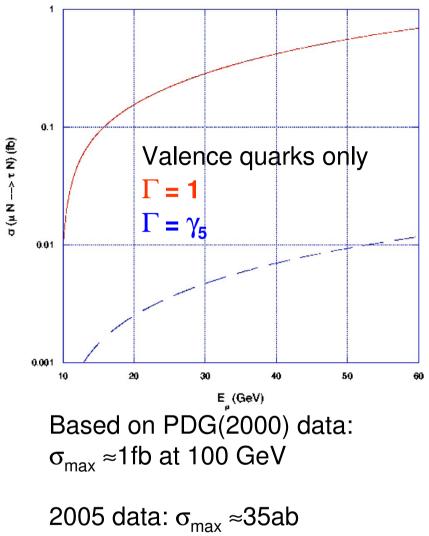
- Current results:
 - BaBar: ~220 fb-1
 - Belle: ~150 fb⁻¹
 - Upper limits ~ 10⁻⁷ ----
- Also upper limits on BR(B $\rightarrow \tau \mu X$) (X=K, π)
- Future projections:
 - BaBar+Belle (2008) ~2000 fb-1
- Combined data push upper limits down by an order of magnitude to $\sim 10^{-8}$

Mode	Belle (90% CL)	BaBar (90% CL)
$\tau^- \to e^- \pi^0$	$1.9 \times 10^{-7} [2]$	
$\tau^- \to e^- \eta$	$2.4 \times 10^{-7} [2]$	
$\tau^- \to e^- \eta'$	$10 \times 10^{-7} [2]$	
$\tau^- \to \mu^- \pi^0$	$4.1 \times 10^{-7} [2]$	
$\tau^- \to \mu^- \eta$	$1.5 \times 10^{-7} [2]$	
$\tau^- \to \mu^- \eta'$	4.7×10^{-7} [2]	
$\tau^- \to e^- \pi^+ \pi^-$	$8.4 \times 10^{-7}[3]$	1.2×10^{-7} [4]
$\tau^- \to e^- \pi^+ K^-$	$5.7 \times 10^{-7}[3]$	3.2×10^{-7} [4]
$\tau^- \to e^- K^+ \pi^-$	$5.6 \times 10^{-7}[3]$	1.7×10^{-7} [4]
$\tau^- \to e^- K^+ K^-$	$3.0 \times 10^{-7}[3]$	1.4×10^{-7} [4]
$\tau^- \to \mu^- \pi^+ \pi^-$	$2.8 \times 10^{-7} [3]$	$2.9 \times 10^{-7} [4]$
$\tau^- \to \mu^- \pi^+ K^-$	$6.3 \times 10^{-7}[3]$	2.6×10^{-7} [4]
$\tau^- \to \mu^- K^+ \pi^-$	$15.5 \times 10^{-7}[3]$	$3.2 \times 10^{-7} [4]$
$\tau^- \to \mu^- K^+ K^-$	$11.7 \times 10^{-7}[3]$	$2.5 \times 10^{-7} [4]$
$\tau^- \to e^- e^+ e^-$	$3.5 \times 10^{-7} [5]$	$2.0 \times 10^{-7} [6]$
$\tau^- \to e^- \mu^+ \mu^-$	$2.0 \times 10^{-7} [5]$	$3.3 \times 10^{-7}[6]$
$\tau^- \to \mu^- e^+ e^-$	$1.9 \times 10^{-7} [5]$	$2.7 \times 10^{-7}[6]$
$\tau^- \to \mu^- \mu^+ \mu^-$	$2.0 \times 10^{-7} [5]$	$1.9 \times 10^{-7} [6]$
$ au ightarrow e\gamma$	$3.9 \times 10^{-7} [7]$	
$\tau \to \mu \gamma$	$3.1 \times 10^{-7}[8]$	$\underline{6.8 \times 10^{-8}}[9]$

Kanemura et al., hep-ph/0505191

3

μ - τ couplings and conversion rate

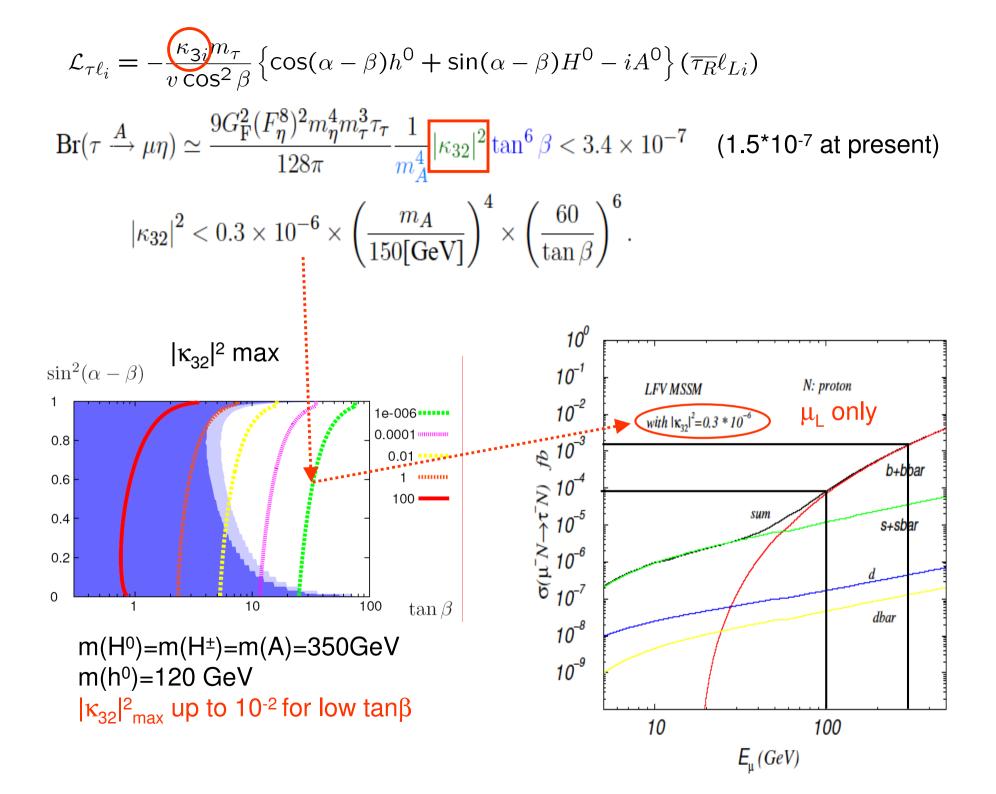

- $\mu \tau$ conversion via high-energetic μ on a nucleon from $\mu q^{\alpha} \rightarrow \tau q^{\beta}$ (e.g. via Higgs or new gauge bosons exchange)
- Model-independent analysis based on dimension-6 fermionic effective operators
 Sher/Turan, PRD69:017302,2004

Black et al., PRD66:053002,2002

$$L_{int} = 4\pi/\Lambda_{\Gamma,\alpha\beta}^{2}(\overline{\tau}\Gamma\mu)(\overline{q}^{\alpha}\Gamma q^{\beta}) + h.c. \quad \Gamma = 1, \gamma_{5}, \gamma_{\sigma}, \gamma_{5}\gamma_{\sigma}$$

Measured upper limits on $\tau\mu$ LFV \rightarrow upper limits on $\Lambda_{\Gamma,\alpha\beta}$ \rightarrow upper limit on $\sigma(\mu q^{\alpha} \rightarrow \tau q^{\beta})$

Bound	1	γ_5	γ_{σ}	$\gamma_{\sigma}\gamma_{5}$
ūu	2.6 TeV	12 TeV	12 TeV	11 TeV
	$(au \! ightarrow \! \mu \pi^+ \pi^-)$	$(au \! ightarrow \! \mu \pi^0)$	$(au \! ightarrow \! \mu ho)$	$(au \! ightarrow \! \mu \pi^0)$
$\overline{d}d$	2.6 TeV	12 TeV	12 TeV	11 TeV
	$(au \! ightarrow \! \mu \pi^+ \pi^-)$	$(au{ ightarrow}\mu\pi^0)$	$(au \! ightarrow \! \mu ho)$	$(au \! ightarrow \! \mu \pi^0)$
55	1.5 TeV	9.9 TeV	14 TeV	9.5 TeV
	$(\tau \rightarrow \mu K^+ K -)$	$(au \! ightarrow \! \mu \eta)$	$(au \! ightarrow \! \mu \phi)$	$(au \! ightarrow \! \mu \eta)$
s d	2.3 TeV	3.7 TeV	13 TeV	3.6 TeV
	$(au \! ightarrow \! \mu K^+ \pi^-)$	$(au \! ightarrow \! \mu K^0)$	$(au \! ightarrow \! \mu K^{\star})$	$(au \! ightarrow \! \mu K^0)$
\overline{bd}	2.2 TeV	9.3 TeV	2.2 TeV	8.2 TeV
ou	$(B \rightarrow \pi \mu \tau)$	$(B \rightarrow \mu \tau)$	$(B \rightarrow \pi \mu \tau)$	$(B \rightarrow \mu \tau)$
\overline{bs}	2.6 TeV	2.8 TeV	2.6 TeV	2.5 TeV
03	$(B \rightarrow K \mu \tau)$	$(B_{\rm s} \rightarrow \mu \tau)$	$(B \rightarrow K \mu \tau)$	$(B_s \rightarrow \mu \tau)$
\overline{tc}	190 GeV	190 GeV	310 GeV	310 GeV
10	$(t \rightarrow c \mu \tau)$	$(t \rightarrow c \mu \tau)$	$(B \rightarrow \mu \tau)$	$(B \rightarrow \mu \tau)$
\overline{tu}	190 GeV	190 GeV	650 GeV	650 GeV
111	$(t \rightarrow u \mu \tau)$	$(t \rightarrow u \mu \tau)$	$(B \rightarrow \mu \tau)$	$(B \rightarrow \mu \tau)$
 c u	*	*	550 GeV	550 GeV
си			$(au ightarrow \mu \phi)$	$(au ightarrow \mu \phi)$
			7	
 cc	*	*	1.1 TeV	1.1 TeV
c c			$(au ightarrow \mu \phi)$	$(\tau \rightarrow \mu \phi)$
\overline{bb}	*	*	180 GeV	*
00	<u> </u>		$(\Upsilon \rightarrow \mu \tau)$	6
	+	+	75 GeV	120 GeV
t t	<u>^</u>	~	$(B \rightarrow \mu \tau)$	$(B \rightarrow \mu \tau)$



2008 data(?): $\sigma_{max} \approx 3.5$ ab

But potential heavy quarks (c,b) contribution at high μ energies (study $c\overline{c} \rightarrow \tau \mu X$ and $b\overline{b} \rightarrow \tau \mu X$?) 5

A physical model: SUSY MSSM

- Scalar and pseudoscalar interactions (Higgs)
 - Couple only to L-handed μ (produce R-handed τ)
 - Couple only to d-type quarks
 - Couplings ∝ m_q →at large Q² (E_µ>50 GeV) significant contribution from b quark →for lower E_µ s quark contribution dominates
 - Upper limit on s-quark coupling from $BR(\tau \rightarrow \mu \eta)$
- Vector, axial vector and tensor interactions (gaugebosons)
 - No enhancement from b-quark contribution
 - → Suppressed for E_{μ} >50 GeV wrt Higgs mediated LFV

Signal estimate

- Working hypothesis:
 - -10 cm Si target [330 planes, 300 μ m-thick, 1m² area]
 - − E_{μ} =100-300 GeV → σ ~0.1-1ab (could be x10⁴ higher?)
- Signal events produced in 1 year:

$$\begin{split} \mathsf{N} &= \mathsf{N}_{\mu} \,\,^{*} \, \sigma \,\,^{*} \, 23.3g \,\, cm^{\text{-}2} \, / \, 1.66^{*} 10^{\text{-}24}g \\ &= \mathsf{N}_{\mu} \,\,^{*} \, \sigma(ab) \,\,^{*} \, 1.4^{*} 10^{\text{-}17} \end{split}$$

• To produce 1000 events/year:

 $-~\sigma$ = 0.1(100) ab \rightarrow N_{μ} = 6*10^{20} (6*10^{17}) μ/yr

 \rightarrow muon flux = 6*10¹⁴ (6*10¹¹) µ/s/m² in the spill if

- 1) duty cycle=10s
- 2) delivery time=10⁷s/yr

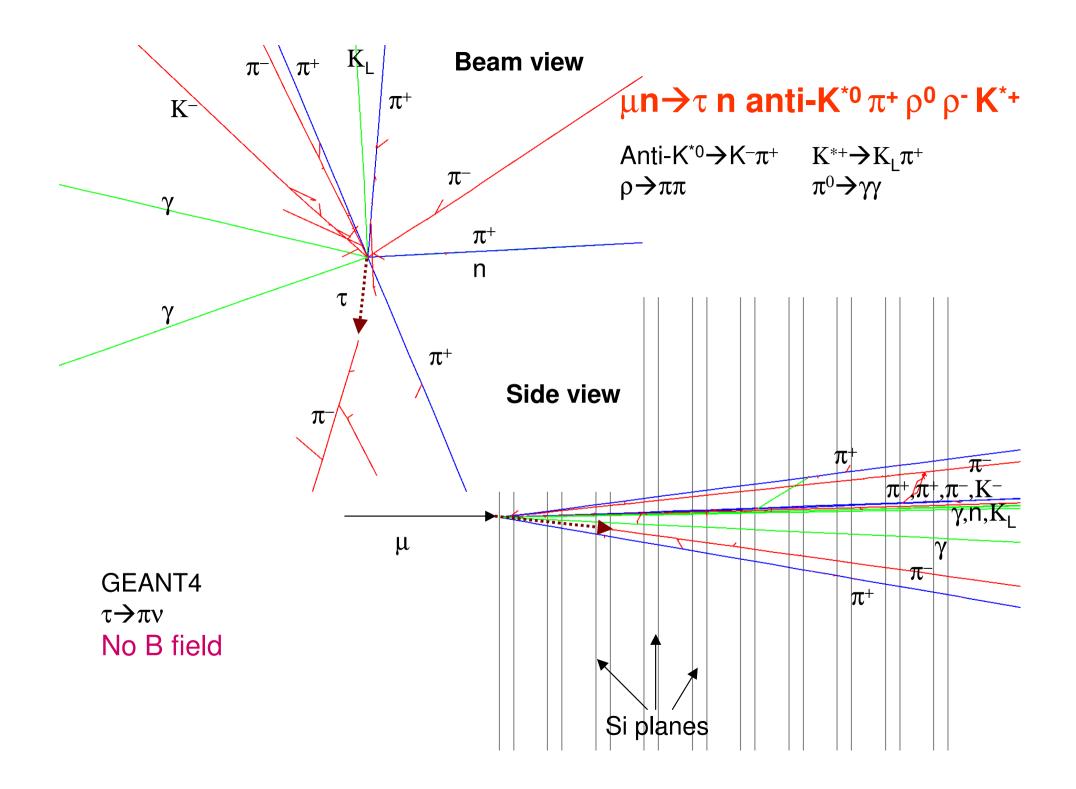
Backgrounds

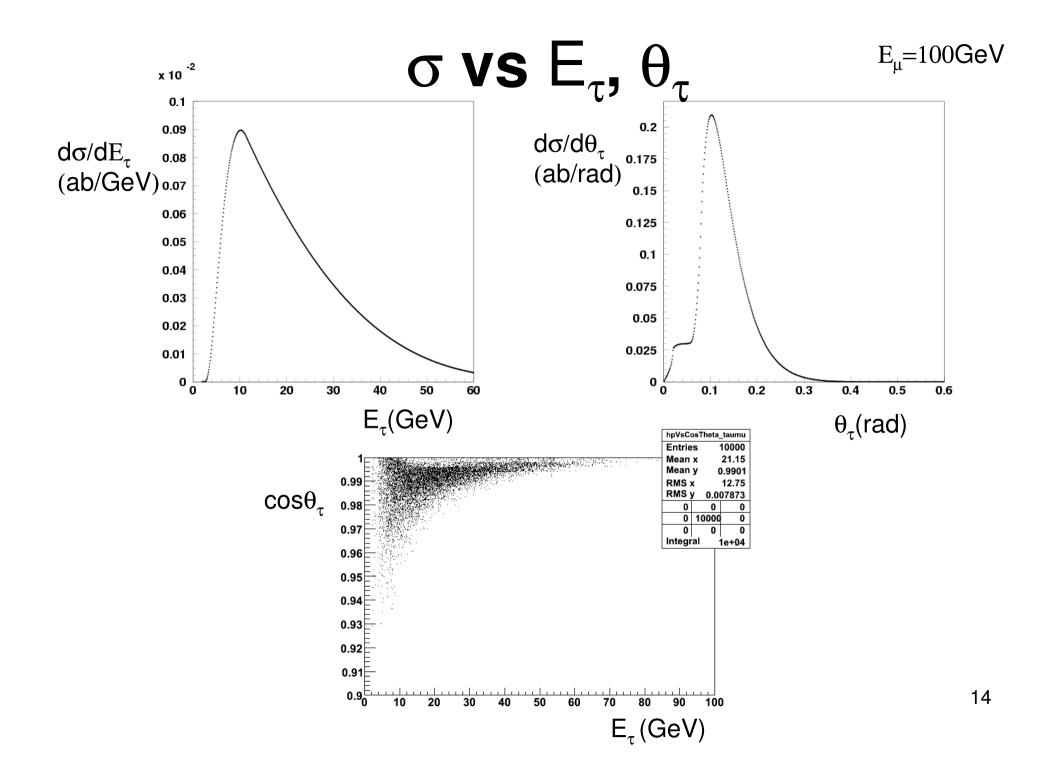
- Beam-related events
 - Can be vetoed (more later)
- Physics
 - Dominant contribution from Deep Inelastic Scattering: $\sigma \sim O(10)$ nb @ Q²>4GeV²
 - $6*10^{14} (10^{11}) \ \mu/s \rightarrow 10^8 (10^5) \ events/s$
 - Trigger: in worst scenario, need rejection $>\sim 10^5$
 - Other processes with lower cross sections (eg $\mu e \rightarrow \mu e, \mu N \rightarrow \nu_{\mu} X$) could be relevant at analysis level and are outside the scope of this study

Which μ energy?

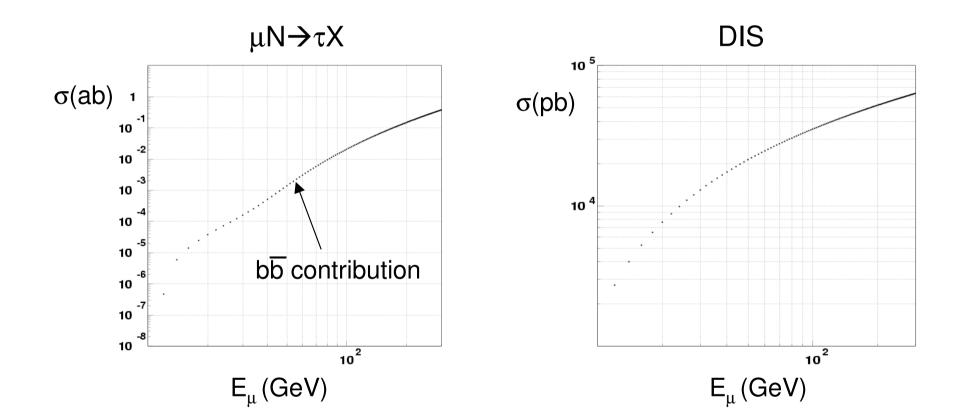
- Signal cross section enhancement from $b\overline{b}$ contribution favors $E_{\mu} > \sim 60 \text{ GeV}$
 - E_{μ} = 100GeV → low W → virtual b →no free B's in the final state
 - E_{μ} = 300GeV → high W → b-flavored hadrons in the final state
- Heavy flavor production in the final state will affect the trigger and analysis strategy

Tools

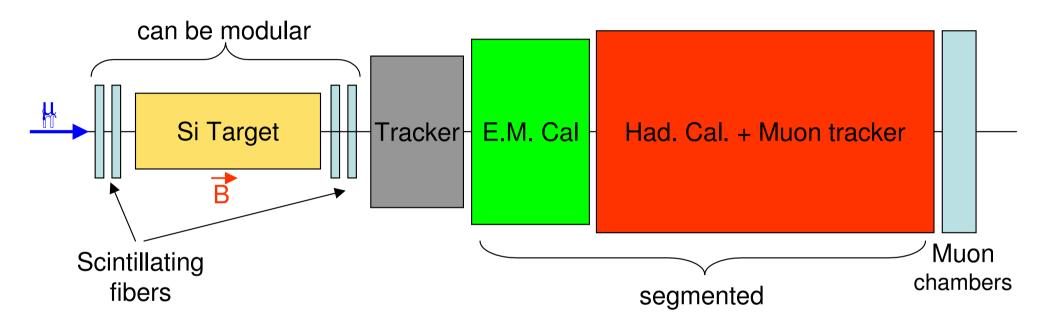

- To study signal and bkg events, we have customized the LEPTO (DIS) generator
 - Implemented elementary cross section (S+PS) proposed by Kanemura et al. (PLB607:165,2005)
 - Alternative cross section formulae can be implemented
- The generator describes only muon-nucleon scattering
 - →how to extend to heavy nuclei including nucleus fragmentation/form factor?


Tools (2)

• The GEANT4 HepEvt interface has been modified in order to read the generator output (momenta, vertices, ..) dumped in an ASCII file


→All the ingredients needed for a realistic simulation of the trigger and detector response are in place

- Further improvements:
 - τ decay currently simulated by Jetset, τ polarization not taken into account → replace with Tauola



Cross sections vs μ energy

 $Q^2 > 4GeV^2$

A conceptual design

NOT TO SCALE!

- Calorimetric sections needed for μ /e/hadron separation
- Si active target provides vertex reconstruction
- \rightarrow can be modular
- Scintillating fibers to reduce beam-associated background
- Particle trajectories and interactions are visualized throughout the whole detector

Some basic requirements

- To reject beam-related events (~10¹⁴ μ /s/m²)
 - ns coincidence
 - <0.1cm² granularity (ϕ <3.3mm)
 - \rightarrow Scintillating fibers could be an option
 - →With 10¹¹ µ/s/m² a coarser granularity obtained with plastic scintillator strips would be as good
- Calorimeters:
 - Emphasis on shower development and shape in order to separate $\mu/e/hadrons$
 - \rightarrow Iongitudinal and transversal segmentation

Si target

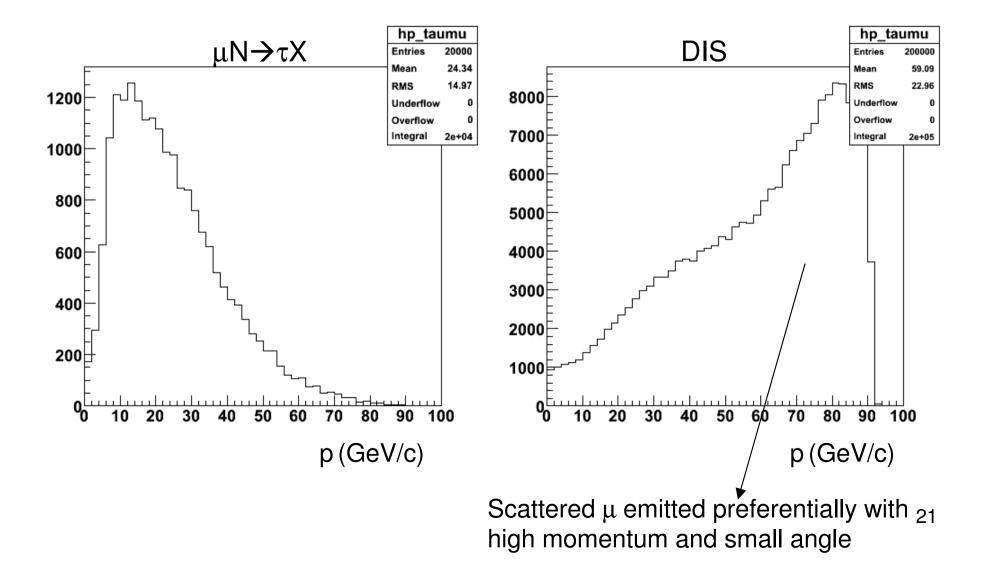
- $1m^2$ surface \rightarrow full beam tracking
- 10cm thickness (330 planes, 300 μ m) $\rightarrow \mu \tau$ conversion rate
- Granularity: compromise between
 - Point resolution driven by τ lifetime (c $\tau \sim 90 \mu m)~\propto A^{-1/2}$
 - Occupancy $\propto A^{-1}$
 - Bandwidth \propto A

With 100*100 μ m² pixels + digital readout:

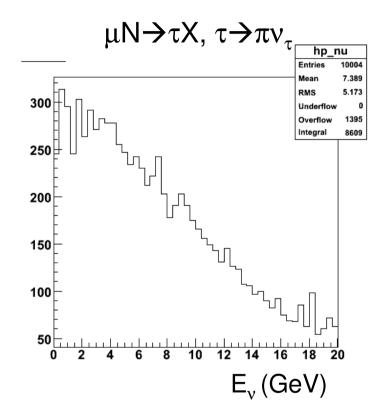
- \rightarrow Point resolution ~ 30 μ m
- \rightarrow Occupancy ~ 10⁻² in 10 ns (for 10¹⁴ $\mu/s/m^2$)
- → Bandwidth: with a L1 trigger rejection factor ~10⁵, 10¹⁴ (10¹¹) μ /s/m², 10s duty cycle & 10 cm x 1m² Si target → 7*10⁴ (10¹) Gb/s

 \rightarrow Extremely challenging with current technology!

Discriminating variables


- Muon-ID [µ chambers + E.M./Had Cal]
- p, p_T of charged tracks
- Impact parameter
- Total missing energy>0 (v from τ decay)

- Other will be investigated


Impact parameter

Highest momentum in the event

Missing (v) energy

- τ decays always produce at least 1ν
- No v produced in most DIS events \rightarrow missing energy virtually 0

But: detector resolution, especially due to neutral hadrons, needs to be studied

Conclusion

- A μ - τ conversion event generator, interfaced with a fulldetector simulation, has been set-up
- A basic design for a detector has been described, with some ideas for a 1st-pass background rejection strategy
- The strength of the detector lies in
 - Capability to visualize the full event
 - Modularity of the active target allows for different sensitivity/cost combinations

at the price of high granularity and fast readout

• A detailed detector design must be simulated and different background sources identified and studied

INPUTS	PDG(2000)	PDG(2005)	PDG(2008)?	
BR(tau->mu pi0)	4.00E-06	4.10E-07	4.10E-08	
BR(tau->mu eta)	9.60E-06	1.50E-07	1.50E-08	
BR(tau->mu K0)	1.00E-03	1.90E-06	1.90E-07	
BR(tau->mu rho)	6.30E-06	6.30E-06	6.30E-07	
BR(tau->mu phi)	7.00E-06	7.00E-06	7.00E-07	
BR(tau->mu K*)	7.50E-06	7.50E-06	7.50E-07	
BR(tau->mu pi pi)	8.20E-06	2.90E-07	2.90E-08	
BR(tau->mu K K)	1.50E-05	2.50E-07	2.50E-08	
BR(tau-> mu K pi)	7.50E-06	3.20E-07	3.20E-08	
BR(B->mu tau)	8.30E-04			
BR(Bs->mu tau)	1.00E-01			
BR(B-> K mu tau)	5.00E-02			
BR(B-> pi mu tau)	5.00E-02			
BR(t-> u mu tau)	2.80E-01			
OUTPUTS(2000)	S	PS	А	V
uu (TeV)	2.6	11.7	11.3	12.4
dd (TeV)	2.6	11.7	11.3	12.4
ss (TeV)	1.5	9.9	9.5	14.3
sd (TeV)	2.3	3.7	3.6	12.8
cu (TeV)			0.55	0.55
cc (TeV)			1.1	1.1
tu (TeV)	0.19	0.19	0.65	0.65
tc (TeV)	0.19	0.19	0.31	0.31
tt (TeV)			0.75	0.12
bd (TeV)	2.2	9.3	2.2	8.2
bs (TeV)	2.6	2.8	2.6	2.5
bb (TeV)			0.18	
OUTPUTS(2005)	S	PS	Α	V
uu (TeV)	6.00E+00	2.07E+01	2.00E+01	1.24E+01
dd (TeV)	6.00E+00	2.07E+01	2.00E+01	1.24E+01
ss (TeV)	4.17E+00	2.80E+01	2.69E+01	1.43E+01
ds (TeV)	5.06E+00	1.77E+01	1.72E+01	1.28E+01
OUTPUT(2008)	S	PS	А	V
uu (TeV)	1.07E+01	3.68E+01	3.55E+01	2.21E+01
dd (TeV)	1.07E+01	3.68E+01	3.55E+01	2.21E+01 24
ss (TeV)	7.42E+00	4.98E+01	4.78E+01	2.54E+01
ds (TeV)	9.00E+00	3.15E+01	3.07E+01	2.28E+01