Charm Dynamics as a Window onto New Physics

Ikaros Bigi Notre Dame du Lac

Common feeling: charm physics -- great past, no future!)

- drove paradigm shift: quarks as real entities essential support for acceptance of QCD
- → electroweak SM phenomenolgy for △C ≠ 0 `dull'
  - CKM parameters `known'
  - D<sup>0</sup> D<sup>0</sup> oscillations very slow
  - GP very small



loop driven decays extremely rare

#### Message in a nutshell

- potentially very rich CP phenomenolgy on 3 Cabibbo levels
- study of charm decays not `hypothesis-driven' research
   leading charm decays not CKM suppressed unlike for K & B
   no special sensitivity to `standard extensions' of the SM
- study of charm decays `hypothesis-generating' research
   FIChNC dynamics could be much stronger in up-type quarks
  - only charm allows full range of probes for New Phys. there
- present absence of any New Physics hint not telling
  - only now entering realistic search territory
  - … and a long way to go!
- B factories produce lots of `clean' & `usable' charm LHC produces lots of charm -- can LHCb use it? Future: Super-B!! Fixed target hadroprod.?



## `dullness' of SM phenomenology

probe (our understanding of) QCD (=LQCD)

very relevant near/mid-term: CLEO-c, B fact. & BES III



 will hopefully validate & sharpen theoret. tools for establishing and identifying New Physics in B decays (crucial -- yet cannot be discussed here)

but long term?? Vis-a-vis New Physics?

"I know she invented fire -- but what has she done lately?"

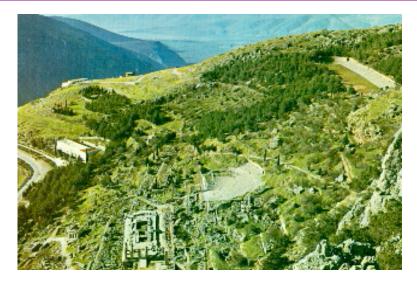
`fire' = Octobre Revolution of '74



- 2 kinds of research:
- `hypothesis-driven' vs. `hypothesis-generating' research
- first kind very important -- & favoured by funding agencies
- yet `thinking outside the box' crucial memento 2005 Nobel Prize in Medicine!
- B physics is `hypothesis-driven'
  - B factories:

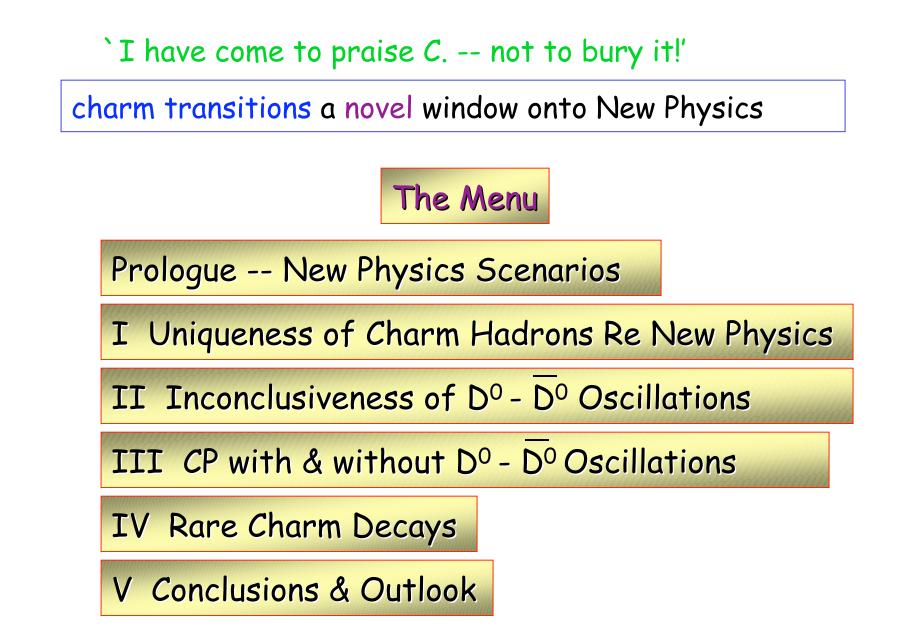
develop & test quantitatively CKM paradigm

Super-B factories:


develop & test quantitatively standard extensions of SM, since all SM B transitions CKM suppressed



- ✤ yet charm dynamics:
  - charm spectroscopy led to recent renaissance in *hypothesis-generating* QCD
  - best long-term motivation:


`hypothesis-generating' search for New Physics

Antiquity's paradigm of `hypothesis-generating' analysis: Delphi & Pythia











#### **Recent Reviews**

G. Burdman, E. Golowich, JA. Hewett, S. Pakvasa: "Rare Charm Decays in the SM & Beyond", Phys. Rev. D66, 47 pages

S. Bianco, F. Fabbri, D. Benson, I. Bigi: "A Cicerone for the Physics of Charm", La Rivista del Nuovo Cimento, 26, # 7-8 (2003), ~ 200 pages

G. Burdman, I. Shipsey, "DO - DO Mixing and Rare Charm Decays", Ann.Rev.Nucl.Part.Sci. 53(2003), 68 pages numbers for rare decays!

I. Bigi: "I have come to praise Charm, not bury it", hepph/0412041



BESIII Charm Physics Book, to appear in 2006

#### Prologue -- New Physics Scenarios

ron need to be crazy or contrived -- being innovative will do

New Physics scenarios for charm decays ---

`the usual list of suspects' (Captain Renard in "Casablanca"): nonminimal SUSY with(out) R parity, Higgs dynamics without NatFlCon, technicolour, topcolour, extra dimensions ...

- no compelling/persuasive New Physics scenario inducing observable & diagnosable effects in D, yet not in B & K decays `compelling/persuasive': SUSY
- yet re-assuring to know New Physics scenarios do exist
- memento: "We know so much about flavour structure -yet understand so little!"



- New Physics scenarios in general induce FIChNC
- their couplings could be substantially stronger for Up-type than for Down-type quarks
  - (actually happens in some models which `brush the dirt of FIChNC in the down-type sector under rug of the up-type sector)



`If baseball teams from Boston & Chicago can win the World Series in two successive years -- overcoming curses having lasted > 80 years -then charm decays can reveal New Physics.'



#### I Uniqueness of Charm Hadrons Re New Physics

observed suppression of FIChNC implemented in SM through NatFlavCons & GIM mechanism

best bet to search for novel FIChNC in down-type hadrons B & K, since their main decays are CKM suppressed

\* think outside the (SM) box':

probe FIChNC dynamics of up-type quarks as

`hypothesis-generating' research



### up-type quarks: u c t

only up-type quark allowing full range of probes for New Phys.
 top quarks do not hadronize → no T<sup>0</sup> - T<sup>0</sup> oscillations hadronization while hard to force under theor. control enhances observability of *C*P
 up quarks: no π<sup>0</sup>-π<sup>0</sup> oscillations possible CP asymmetries basically ruled out by CPT

basic contention:

charm transitions are a unique portal for obtaining a novel access to flavour dynamics with the experimental situation being a priori favourable (apart from absence of Cabibbo suppression)!



# II `Inconclusive' $D^0 - \overline{D}^0$ Oscillations

(2.1) Basics

- © fascinating quantum mechanical phenomenon
- ambiguous probe for New Physics (=NP)
- important ingredient for NP CP asymm. in D<sup>0</sup> decays

$$x_{\rm D} = \frac{\Delta m_D}{\Gamma_{\rm D}}$$
  $y_{\rm D} = \frac{\Delta \Gamma_D}{2\Gamma_{\rm D}}$ 

# general expectations ΔΓ: on-shell contributions ~ insensitive to New Physics Δm: virtual intermediate states ~ sensitive to New Physics ×<sub>D</sub> ~O(few %) conceivable in models



D<sup>0</sup>-D<sup>0</sup> oscillations `slow' in the SM  
How `slow' is `slow'? 
$$x_D = \frac{\Delta m_D}{\Gamma_D} \quad y_D = \frac{\Delta \Gamma_D}{2\Gamma_D}$$
  
 $x_D, \quad y_D \sim SU(3)_{Fl} \cdot 2\sin^2 \theta_C < \text{few} \cdot 0.01$   
on-shell transitions  
off-shell transitions  
 $\leftarrow conservative \text{ bound: } x_D, y_D \sim O(0.01)$   
Data:  $x_D < 0.03, y_D \sim 0.01 \pm 0.005$  -- see later

"game" has just begun! 🛀



considerable previous literature -- remember the `(in)famous H. Nelson' plot! -- yet with several ad-hoc elements mainly with respect to nonperturbative dynamics

systematic analysis based on Operator Product Expansion

expansion in powers of 1/m<sub>c</sub>, m<sub>s</sub>, KM (Uraltsev, IB, Nucl. Phys. B592('01))

GIM suppression  $(m_s/m_c)^4$  of usual quark box diagram un-typically severe! 3 contributions from higher-dimensional operators with a very gentle GIM factor ~  $m_s/\mu_{had}$  ... due to condensates in the OPE!

$$m_{s}^{2}\mu_{had}^{4}/m_{c}^{6}$$
 (vs.  $m_{s}^{4}/m_{c}^{4}$ )

power counting in 1/m<sub>c</sub> can be quite iffy

 $[ x_{D}(SM) |_{OPE}, y_{D}(SM) |_{OPE} \sim O(10^{-3}) ]$ 

unlikely uncertainties can be reduced



another analysis very different in spirit performed by

A. Falk et al., Phys. Rev. D65 (`02)

uses dispersion relations & sums up exclusive channels implementing SU(3)<sub>Fl</sub> just by simple phase space
 yields similar numbers

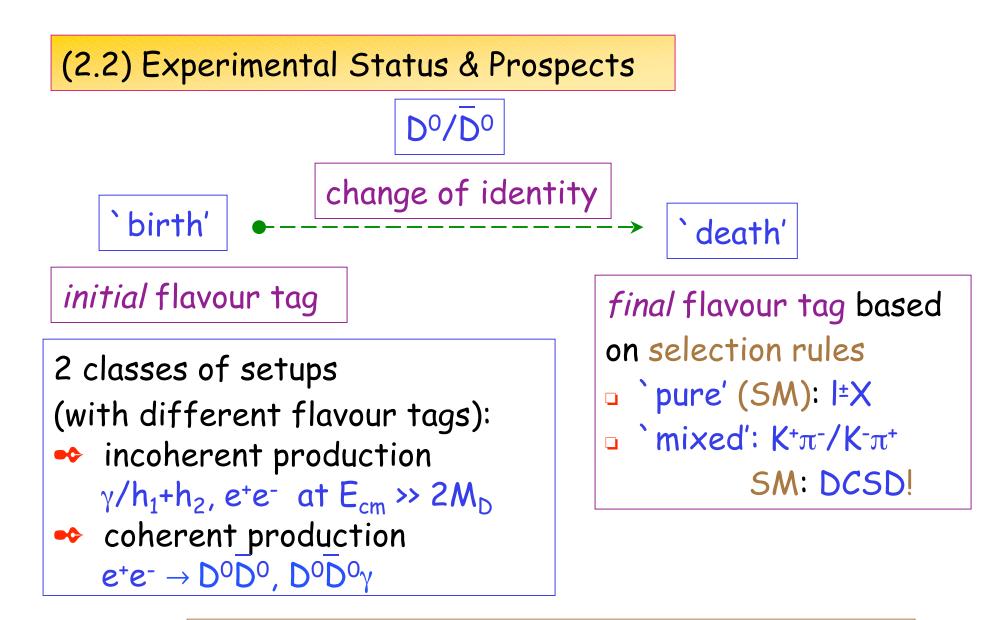
```
crucial distinction in question:
```

"What is the most likely value of  $x_D \& y_D$  within the SM?"  $O(10^{-3})!$ 

"How large could x<sub>D</sub> & y<sub>D</sub> conceivably be within the SM?" Cannot rule out 10<sup>-2</sup>!

VS.

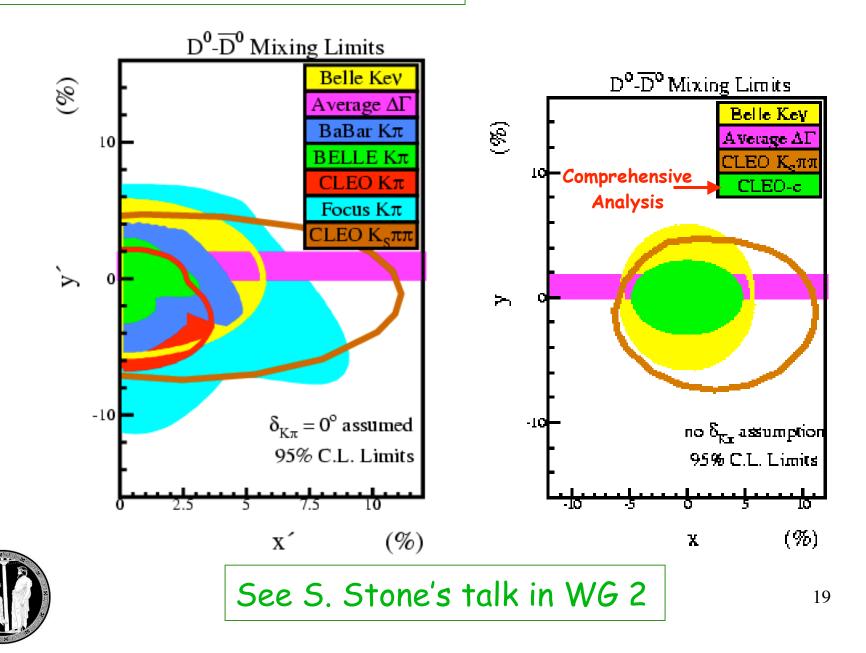





Caveat en passant:

 $\Box \Delta \Gamma(B_s)$  vulnerable to violations of local duality!

remember when extracting |V(td)| from  $\Delta m(B_d) / \Delta \Gamma(B_s)$ 



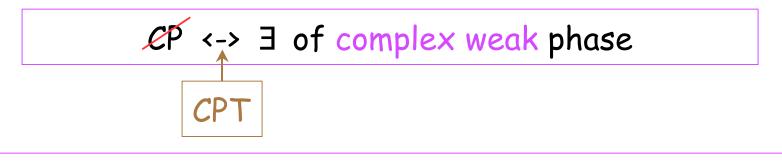





#### oscillation = change of identity time dependent

from D. Asner at Hadron '05



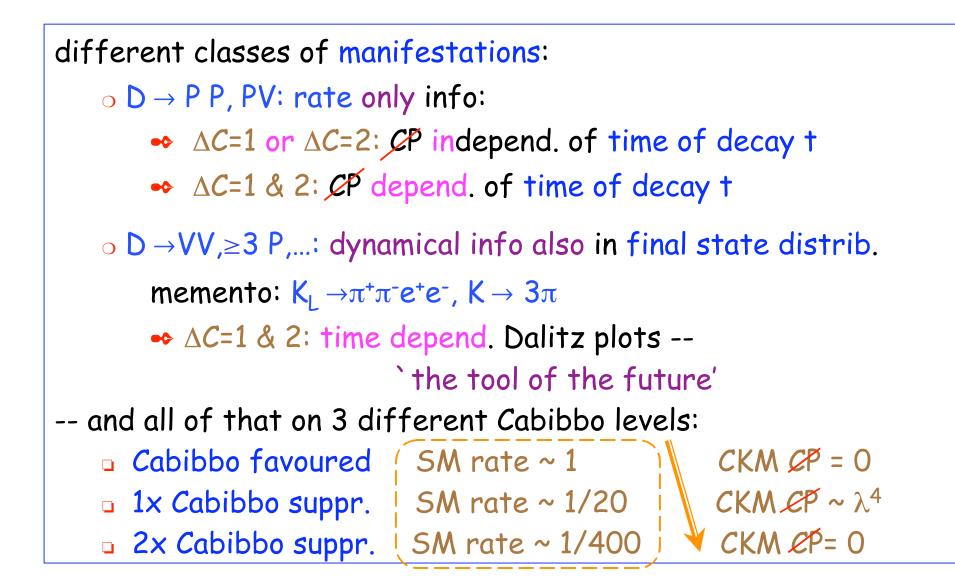

## III $\mathcal{CP}$ with & without $D^0 - \overline{D}^0$ Oscillations

- Solution baryon # of Universe implies/requires NP in *CP* dynamics
- © existence of three-level Cabibbo hierarchy
- ☺ within SM:
  - $rightarrow tiny weak phase in 1x Cabibbo supp. Modes: V(cs) = 1 ... + i\lambda^4$
  - $^{\hbox{\tiny INS}}$  no weak phase in Cab. favoured & 2 x Cab. supp. modes (except for  $D^{\pm} \rightarrow K_{S}h^{\pm})$
- © CP asymmetry linear in NP amplitude
- © final state interactions large
- ☺ BR's for CP eigenstates large
- $\textcircled{\mbox{\scriptsize our}}$  flavour tagging by  $D^{\pm^{\star}} \rightarrow D\pi^{\pm}$
- $\odot$  many  $H_e \rightarrow \geq 3 P_VV_{...}$  with sizeable BR's
  - CP observables also in final state distributions



😕 large hadroproduction, yet no efficient triggers

 $\bigcirc$  D<sup>0</sup>-D<sup>0</sup> oscillations at best slow




 need 2 different, yet coherent weak amplitudes for CP to become observable

2 sources of  $\mathcal{CP}$ 

• direct 
$$\mathcal{CP}$$
:  $\Delta C = 1$   
• indirect  $\mathcal{CP}$ :  $\Delta C = 2$ 









## yet the ingredients are there for the desert to bloom manyfold!



# (3.1.1) time integrated partial widths

(3.1) Direct CP

final state interact. Second state interact. Second state signal Second state signal

© Cabibbo favour. (CF) modes: need New Physics (except \*)

Ix Cabibbo supp. modes (SCS) possible with KM -- benchmark:  $O(\lambda^4) \sim O(10^{-3})$ New Physics models: O(%) conceivable if observe direct *CP* ~ 1% in SCS decays -- is it New Physics? must analyze host of channels

2x Cabibbo supp. modes (DCS):need New Physics (except \*)

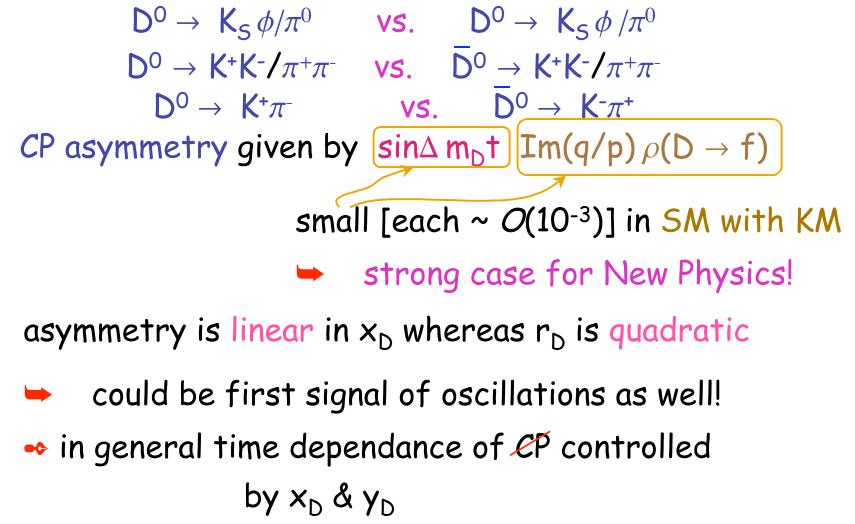
exception \*:  $D^{\pm} \rightarrow K_{S[L]} \pi^{\pm}$ interference between  $D^+ \rightarrow K^0 \pi^+$  and  $D^+ \rightarrow K^0 \pi^+$ 



in KM only effect from  $\mathscr{P}$  in K<sup>0</sup> -  $\overline{K}^0$ :  $A_s = [+]_s - [-]_s = -3.3 \times 10^{-3}$  24

#### (3.1.2) Final state distributions: Dalitz plots, T-odd moments

final state interact. Solution in the signal is a nuise of the signal in the signal is a nuise of t


very promising -- most effective theoretical tools not developed yet for small asymmetries (except Dalitz plot) Pilot study by Focus (CLEO-c?)

Output: Content of the symmetry likely to be larger than integrated one

angular asymmetry can provide info on chirality of underlying effective operator!



(3.2) CP involving D<sup>0</sup>-D<sup>0</sup> oscillations: `indirect' CP





#### A new chapter

 $\begin{array}{cccccccccccccc} \mathsf{D}^{0} \rightarrow \ \mathsf{K}_{\mathsf{S}} \pi^{+} \pi^{-} & \mathsf{vs.} & \overline{\mathsf{D}}^{0} \rightarrow \ \mathsf{K}_{\mathsf{S}} \pi^{+} \pi^{-} \\ \mathsf{D}^{0} \rightarrow \ \mathsf{K}^{+} \mathsf{K}^{-} \pi^{0} / \pi^{+} \pi^{-} \pi^{0} & \mathsf{vs.} & \overline{\mathsf{D}}^{0} \rightarrow \ \mathsf{K}^{+} \mathsf{K}^{-} \pi^{0} / \pi^{+} \pi^{-} \pi^{0} \\ & \mathsf{D}^{0} \rightarrow \ \mathsf{K}^{+} \pi^{-} \pi^{0} & \mathsf{vs.} & \overline{\mathsf{D}}^{0} \rightarrow \ \mathsf{K}^{-} \pi^{+} \pi^{0} \end{array}$ 

time dependant Dalitz plot studies require a large amount of initial `overhead' and large statistics -yet then they are very powerful probes of dynamics

Pythagoras: "There is no royal way to mathematics!"



## (3.3) Experimental status

So far only time integrated CP analyzed with a sensitivity in

- □  $D \rightarrow 2$  body (Cab. fav. & 1x supp.) ~ O(1%)
- $D \rightarrow 3$  body (Cab. fav. & 1x supp.) ~ several %
- I suspect main limitation is manpower first, statistics only second
- ◆ time dependent CP `terra incognita'
- constraints from CPT will become useful

beyond equality of masses & total widths CPT imposes equality between widths for `disjoint' sets of final states

`disjoint' = states that cannot rescatter into each other



(3.4) Benchmarks for future searches

for definitive measurements must aim at:

- $\circ$  x<sub>D</sub>, y<sub>D</sub> down to  $O(10^{-3}) \Leftrightarrow r_D \sim O(10^{-6} 10^{-5})$ important at least as experimental validation
- o time dependant CP asymmetries in
  - $D^0 \rightarrow K^+K^-, \pi^+\pi^-, K_5\phi$  down to  $O(10^{-4})$
  - $D^0 \rightarrow K^+\pi^-$  down to  $O(10^{-3})$ LHCb: ~  $5 \times 10^7$  D\*  $\rightarrow$  D  $\pi \rightarrow$  KK in 10<sup>7</sup> sec
- o direct *CP* in partial widths of

  - $D^{\pm} \rightarrow K_{S[L]}\pi^{\pm}$  down to  $O(10^{-3})$  in a host of 1xCS channels down to  $O(10^{-3})$
  - $\rightarrow$  in 2xCS channels down to  $O(10^{-2})$
- o direct *CP* in the final state distributions:

Dalitz plots, T-odd correlations etc. down to  $O(10^{-3})$ 



obviously going after  $\mathcal{C}$ P below 1 % level not straightforward due to systematics (detectors made from matter!)

possible antidotes:

 $\bullet\,$  time dependance controled by  $x_D$  &  $y_D$  if oscillations are involved

Dalitz plot consistency checks

 quantum statistics constraints on distributions, T odd moments etc.

▲ `combined arms' might be essential to reach 10<sup>-4</sup> level: combining surgical precision of tau-charm data with the long reach of B factory measurements and the statistical muscle of hadroproduction



#### IV Rare Charm Decays

the usual -- and some unusual -- suspects

🔹 "adagio, ma non troppo"

■  $D_{(s)} \rightarrow \gamma X$ ■  $D_{(s)} \rightarrow \gamma K^* / \rho / \omega / \phi$  | long distance dynamics ■ within SM:  $BR(D^0 \rightarrow \gamma X)|_{SDdyn} \sim few \times 10^{-8}$   $BR(D^0 \rightarrow \gamma K^*) \sim few \times (10^{-5} - 10^{-4})$   $BR(D^0 \rightarrow \gamma \rho^0) \sim 10^{-6} - 10^{-5}$ ,  $BR(D^0 \rightarrow \gamma \phi) \sim 10^{-6}$  few  $\times 10^{-5}$ ■  $BR(D^0 \rightarrow \gamma \phi) \sim (2.6 \pm 0.70 \pm 0.17) \times 10^{-5}$ 

© New Physics transition operators local `Penguins'



• "much rarer still"  $D^0 \rightarrow \mu^+ \mu^-$ □ SM: BR(D<sup>0</sup> →  $\mu^+\mu^-$ ) ~ O(10<sup>-12</sup>) □ CDF: BR(D<sup>0</sup> →  $\mu^+\mu^-$ ) < 2.4 × 10<sup>-6</sup> no cute enhancement in SUSY as for  $B_s \rightarrow \mu^+\mu^-$ □ SUSY with  $\mathbb{R}$ : BR( $D^0 \rightarrow \mu^+\mu^-$ ) up to experim. bound • forbidden modes:  $D^0 \rightarrow e^+\mu^-/\mu^+e^-$ □ BR(D<sup>0</sup> →  $\mu^+e^-$ ) < 8.1 x 10<sup>-6</sup> □ SUSY with R: BR( $D^0 \rightarrow \mu^+ e^-$ ) up to experim. bound

 $\bullet \bullet$  exotic New Physics:  $D^{\scriptscriptstyle +} \to \pi^{\scriptscriptstyle +}/K^{\scriptscriptstyle +}\,f^0$  ,  $\pi^{\scriptscriptstyle -}/K^{\scriptscriptstyle -}\,I^{\scriptscriptstyle +}\,I^{\scriptscriptstyle +}$ 

familon f<sup>0</sup> searched for in K & B decays, not in D decays



- the likely work horse
  - $□ D_{(s)} → I^{+}I^{-}X_{u}$   $□ D_{(s)} → I^{+}I^{-}K/\pi...$ shaped to a higher degree by long distance dynamics than in B decays
  - theoret. control helped by analyzing m(l<sup>+</sup>l<sup>-</sup>)
  - $\square$  within SM: BR(D^0 \rightarrow |+|-X)|\_{SDdyn} ~ few x 10^{-8} BR(D  $\rightarrow$  |+|- $\pi/\rho$ ) ~ 10^{-6}
  - □ FOCUS: BR(D<sup>+</sup> → I<sup>+</sup>I<sup>-</sup> $\pi^+$ ) < 8.8 × 10<sup>-6</sup>

© New Physics transition operators local `Penguins'

© can/should analyze lepton spectra



## V Conclusions & Outlook

Charm -- that provided essential support for acceptance of QCD (and recently seems to teach us novel lessons on QCD) -- might, just might have `its best still to come'. For it could provide essential support for an emerging New Standard Model:

- (it can calibrate our theoretical tools for B decays)
- exhibits mostly advantages on the experimental side
  - © copious production at existing (now & soon) and proposed machines, sizeable BR's for relevant modes, efficient flavour tagging, ...

😕 yet an efficient trigger for hadronprod. needed



has mostly advantages also on the phenomenological side

 $\hfill \odot$  virulent final state interactions for allowing for direct  $\ensuremath{\mathcal{CP}}$  in widths

(moderately) complex final states allowing for *CP* in distributions

 $\otimes$  yet D<sup>0</sup>- $\overline{D}^0$  oscillations not fast

has some advantages even on the theoretical side

the `dullness' of the SM phenomenology

Observation could be brought under control due to comprehensive data and future lattice QCD progress

😕 yet no persuasive New Physics Scenario



2 strategic considerations

admission of humility: "We know so much about flavour structure -- yet understand so little!"

we will be unable to diagnose the anticipated New Dynamics at the TeV scale without mapping its impact on flavour dynamics

beggars can't be choosers' -- i.e., only 6 quarks
More specifically:

FIChNC could be considerably stronger for up-type quarks

charm decay provide the most sensitive, though not most direct portal to them



There are measurements `out there' that will put you into the Pantheon (a.k.a. `Valhalla' in Teutonic or `Hall of Fame' in US parlance):

- probably rare decays
- maybe  $D^0 \overline{D}^0$  oscillations

Only recently have we entered `promising territory'...

and there are 2 - 3 orders of magnitude in sensitivity waiting for `treasure hunters'!



due to `dullness' of SM weak phenomenology will be able to make compelling case for New Physics driving signals...

▲ ... and probably more: should be able to identify salient features of that New Physics like the chirality of its effective transition operators.

• CLEO-c/BES III/B fact. will produce a very rich & high quality data base for  $D_{(s)}$  decays

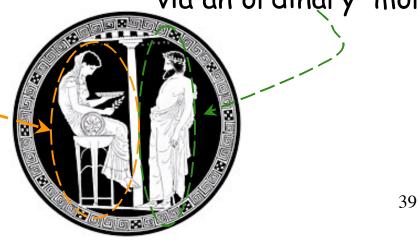
 $(\Lambda_c/\Xi_c: CLEO-c \text{ will not do it, BES III cannot do it -- B fact.?})$ 

final states sufficiently complex to allow rich phenom.,
 yet maybe simple enough not to be beyond theoret. control

• CPT constraints, chiral dynamics, quasi-2-body unitarity

Iattice QCD approaching charm from above & below




B factories are superb charm factories Super-B factories even more so Hadroproduction: to which degree can LHCb do it? future FT experiments? Super-Tau-Charm at 10<sup>35</sup>??

any NP signal from LHC will be a boost -- morally & substantially 1<sup>st</sup> hypothesis: more sensitivity in B & K decays -- unless find, e.g., neutral object decaying into single charm

Message has been as specific and clear as can be expected when communicated from this Pythia \_\_\_\_\_\_\_ via an ordinary mortal



not this  $\rightarrow$ 







a few relevant technicalities:

• violation of selection rule = signal for oscillation  $\Delta Q = -\Delta C$ : strict selection rule within SM

 $\Delta S = \Delta C$ : broken selection rule within SM due to DCSD

oscillations imply time dependent violation of

selection rule  $\longrightarrow$  most specific evidence!

• 
$$x_D = \Delta M_D / \Gamma_D$$
,  $y_D = \Delta \Gamma_D / \Gamma_D$  central quantities

 $\texttt{\textbf{x}}_{\mathsf{D}} \And \mathsf{y}_{\mathsf{D}} \text{ directly observable in } \mathsf{D}_{\mathsf{neut}} \to \mathsf{I}^{\pm} \mathsf{X}$ 

$$x_{D}' = x_{D} \cos\delta + y_{D} \sin\delta \& y_{D}' = y_{D} \cos\delta - x_{D} \sin\delta$$
  
directly observable in  $D_{neut} \rightarrow K^{+}\pi^{-}/K^{-}\pi^{+}$   
measurable in  $\psi(3770) \rightarrow D^{0}D^{0}$   
 $x_{D}^{2} + y_{D}^{2} = (x_{D}')^{2} + (y_{D}')^{2}$ 



2 classes of approaches

Class I:

search for a `global' violation of a flavour selection rule,

i.e., integrating over all times of decay

Class II:

search for a time depend. violat. of a flavour selection rule by
measuring directly times of decay

important cross check when searching for small effects!

exploiting EPR correlations (ibi 1987, Asner&Sun hep-ph/0507238)

 $e^+e^- \rightarrow D^0 \overline{D}{}^0 \ \ \text{vs.} \ D^0 \overline{D}{}^0 \ \gamma$ 

