The Search for Neutron Electric Dipole Moment, present experiment at ILL, Grenoble, and future prospects

nEDM experiment - Rutherford Appleton Laboratory - University of Sussex - ILL

CryoEDM experiment - Rutherford Appleton Laboratory - University of Sussex – ILL – University of Kure – University of Oxford

University of Kure (Japan) H. Yoshiki
RAL - M.A.H Tucker, S.N. Balashov, V. Francis
University of Sussex - M. Hardiman, P. Smith, J. Grozier, K. Zuber
University of Oxford H. Kraus, B. Majorovits, N. Jelley, U. Divaker
nEDM experiment

1. Why we need to measure neutron EDM
2. Measurement principle
3. nEDM apparatus
4. Magnetometry – Hg comagnetometer
5. Statistical and systematical errors

CryoEDM experiment

1. Why superfluid Helium
2. UCN source at H53 beam at ILL
3. CryoEDM apparatus
4. Present status and future prospects
The Neutron Electric Dipole Moment: d_n

$d_n \neq 0 \Rightarrow P$ and T violation
Why we need to measure nEDM

- The validity of the parity assumption must rest on experimental evidence...
- CP violation is observed in K and B meson systems.
- CP violation outside of SM is needed to explain observed particle-antiparticle asymmetry in the Universe
- Theoretical predictions beyond the SM

The neutron is not as simple as it looks…
Measurement principle

\[H = -\mu_n \vec{B} - d_n \vec{E} \]

\[\nu(\uparrow\uparrow) - \nu(\uparrow\downarrow) = \Delta \nu = -4 \frac{dE}{h} \]

\(B_0 \) has to be unchanged when \(E \) is reversed.
1. "Spin up" neutron...

2. Apply $\pi/2$ spin flip pulse...

3. Free precession...

4. Second $\pi/2$ spin flip pulse.

Statistical uncertainty

$$\sigma(d_n) = \frac{\hbar}{2\alpha E T \sqrt{N}}$$

$$\sigma(d_n) = 2 \times 10^{-25} \text{ e.cm/day}$$
The Search for Neutron Electric Dipole Moment at ILL…

nEDM apparatus
Experimental setup
The Search for Neutron Electric Dipole Moment at ILL
The ILL Reactor

- Neutron turbine
- Vertical guide tube
- Cold source
- Reactor core
Grenoble
Institut Laue
Langevin (Alpes)

The Search for Neutron Electric Dipole Moment at ILL
The Search for Neutron Electric Dipole Moment at ILL
Measuring the mercury Larmor precession frequency:

Turn polarised 199Hg by $\frac{\pi}{2}$ rf pulse
Hg precesses in same volume as neutrons
PMT measures signal of reading bulb
Fit signal to decaying sine curve

$d(^{199}$Hg$) < 2.1 \times 10^{-28} \text{ e cm}$
The Search for Neutron Electric Dipole Moment at ILL

Hg co-magnetometer

Top view:

Polarised Hg atoms

PMT output:

Digitised voltage (bits)

ADC reading no.
The Search for Neutron Electric Dipole Moment at ILL...

nEDM measurement

Hg co-magnetometer now compensates B drift

Run duration (hours)

ΔB = 10^{-10} T
The Search for Neutron Electric Dipole Moment at ILL

The graph shows the neutron EDM measurements over time, with data points indicating a fluctuating pattern around zero. The y-axis represents the neutron EDM in 10^{-25} e cm, while the x-axis represents the run number ranging from 1300 to 1900. The graph also includes a zoomed-in section showing a more detailed view of the data points, along with a note indicating post-publication data.
False effects

from Special Relativity, extra motion-induced field

$$\vec{B}_v = \frac{\vec{v} \times \vec{E}}{c^2}$$

If B_0 field has vertical gradient, then

$$B_{0r}(\vec{r}) = -\frac{\partial B_{0z}}{\partial z} \frac{\vec{r}}{r^2}$$
Geometric phase

... so particle sees additional rotating field

Frequency shift $\propto E$

Looks like an EDM
Systematics

- Consider

\[R = \frac{\nu_n}{\nu_{Hg}} \cdot \frac{\gamma_{Hg}}{\gamma_n} \]

- Should have value 1
- R is shifted by magnetic field gradients
- Plot EDM vs measured R-1:

\[\Delta h = 2.73 \pm 0.39 \text{ mm} \]
The Search for Neutron Electric Dipole Moment at ILL

B field Down

B field Up
Statistical and systematical errors

\[d_n = -0.31 \pm 1.54 \times 10^{-26} \text{ e.cm} \quad \text{preliminary} \]

Systematical errors

<table>
<thead>
<tr>
<th>Error Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dipole & quadrupole shifts</td>
</tr>
<tr>
<td>Enhanced GP dipole shifts</td>
</tr>
<tr>
<td>((E \times v)/c^2) from translation</td>
</tr>
<tr>
<td>((E \times v)/c^2) from rotation</td>
</tr>
<tr>
<td>Light shift: direct</td>
</tr>
<tr>
<td>B fluctuations</td>
</tr>
<tr>
<td>Light shift: GP effects</td>
</tr>
<tr>
<td>E forces – distortion of bottle</td>
</tr>
<tr>
<td>Tangential leakage currents</td>
</tr>
<tr>
<td>AC B fields from HV ripple</td>
</tr>
<tr>
<td>Others …….</td>
</tr>
</tbody>
</table>
CryoEDM experiment

Statistical uncertainty

\[\sigma(d_n) = \frac{\hbar/2}{\alpha E T \sqrt{N}} \]

\[\sigma(d_n) = 2 \times 10^{-25} \text{ e.cm/day} \]

for “room temperature”

nEDM experiment

New UCN source

Superthermal UCN source:

a) a medium has a very small neutron absorption;
b) the medium has a critical energy for total reflection which is much smaller than that of vessel’s walls
c) the medium behaves as if there were only one excited state with excitation energy \(E \gg T \gg E_u \)

T-temperature of the medium, \(E_u \) – the UCN energy

Isotopically pure HeII

a) \(\sigma_{\text{absorption}}=0 \)
b) \(V_{\text{crit}}=21 \text{ neV} \)
c) Pure coherent scattering \(E_{\text{phonon}}=11K, \)

\(T_{\text{He}}=0.5K, E_{\text{UCN}}=1 \text{ mK} \)
Production rate one-phonon interaction:

\[R_I = 4.1 \times 10^8 \frac{d\Phi}{d\lambda} \left|_{\lambda} \right. \text{cm}^{-3}\text{s}^{-1} \]

main process: one phonon downscattering

cold neutron → phonon → ultra cold neutron

Energy momentum dispersion curve

free neutron

liquid He

12 K

0.7 Å⁻¹
Storing superthermal UCN

limited by:

- neutron lifetime
- ^{4}He purity
- storage volume wall absorption cross section
- upscattering

τ - storage time, one phonon scattering only

$$\frac{1}{\tau} = A \exp\left[-\frac{11.9}{T}\right] + \frac{1}{\tau_0}$$
The Search for Neutron Electric Dipole Moment at ILL

CryoEDM overview
Neutron detection

Ion-implanted Si with neutron to charged particles converter

\[n + ^{10}B \rightarrow \alpha(1.78 \text{ MeV}) + ^{7}\text{Li}(1.01) \]

\[n + ^{10}B \rightarrow \alpha(1.47 \text{ MeV}) + ^{7}\text{Li}(0.83 \text{ MeV}) + \gamma(0.48 \text{ MeV}) \]

\[n + ^{6}\text{Li} \rightarrow \alpha (2.05 \text{ MeV}) + ^{3}\text{H} (2.74 \text{ MeV}) \]
Pulse Height Analysis of cryogenic UCN detectors
The Search for Neutron Electric Dipole Moment at ILL

![Graph showing neutron count against wavelength (Å) for different wavelengths including 4.5 Å, 5 Å, 5.5 Å, 6 Å, 6.5 Å, 7 Å, 7.5 Å, 8 Å, 8.5 Å, 9.0 Å, 9.5 Å, 10 Å, 10.5 Å, and 11.0 Å, with a line for no velocity selector.]
Neutron velocity selector

Daimler-Benz Aerospace
Dornier

Wavelength λ 0.45 to 4.3 nm

$\alpha(\degree)$ $T(\%)$ $R(\%)$

60 79.4 11.4
UCN production rate vs λ_n

1.19±0.18 UCN cm$^{-3}$ s$^{-1}$ expected, 0.91±0.13 observed

The Search for Neutron Electric Dipole Moment at ILL

CryoEDM overview
Cryogenic Ramsey chamber
Magnetometry

• **SQUID Magnetometers**
 – Developed at Oxford for CRESST
 – Highly sensitive: adequate to monitor field fluctuations

• Also: Neutron Magnetometers...
Statistical limits

\[
\sigma_d = \frac{\hbar/2}{\alpha \, E \, T \, \sqrt{N}}
\]

<table>
<thead>
<tr>
<th>Factor</th>
<th>Current</th>
<th>Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polarisation+detection</td>
<td>(\alpha = 0.75)</td>
<td>x 1.5</td>
</tr>
<tr>
<td>Electric field:</td>
<td>(E = 10^6 \text{ V/m})</td>
<td>x 2.0</td>
</tr>
<tr>
<td>Precession period:</td>
<td>(T = 130 \text{ s})</td>
<td>x 1.8</td>
</tr>
<tr>
<td>Neutrons counted:</td>
<td>(N = 6 \times 10^6 \text{ /day})</td>
<td>x 14.9</td>
</tr>
<tr>
<td>(with new beamline)</td>
<td></td>
<td>x 2.6</td>
</tr>
</tbody>
</table>

Total increase = x 80 (x200 with new beamline)
CryoEDM to start running in summer 2006
The Search for Neutron Electric Dipole Moment, present experiment at ILL, Grenoble, and future prospects

nEDM experiment - Rutherford Appleton Laboratory - University of Sussex - ILL

CryoEDM experiment - Rutherford Appleton Laboratory - University of Sussex – ILL – University of Kure – University of Oxford
University of Kure (Japan) H. Yoshiki
RAL - M.A.H Tucker, S.N. Balashov, V. Francis
University of Sussex - M. Hardiman, P. Smith, J. Grozier, K. Zuber
University of Oxford H. Kraus, B. Majorovits, N. Jelley, U. Divaker
The Search for Neutron Electric Dipole Moment at ILL

CryoEDM

10^{-27} \text{ e.cm 2006/8}

10^{-28} \text{ e.cm 2008/9}

nEDM

dn = -0.31 \pm 1.54 \times 10^{-26} \text{ e.cm}

preliminary