
Charm Physics - Experimental

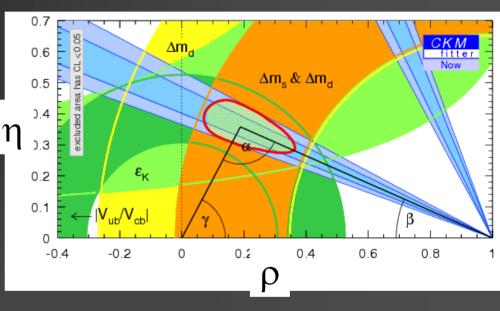
FLAVOUR IN THE ERA OF THE LHC, Nov. 7-10, 2005

Sheldon Stone, Syracuse University

"I charm you, by my once-commended beauty" Julius Cæsar, Act II, Scene I

Why Study Charm? – Overview

- Tests of Theoretical Models necessary to interpret critical CKM data, usually obtained from B decays
- CKM Matrix elements: Charm decays can be used to determine directly V_{cd} & V_{cs}, indirectly V_{ub} and contribute to V_{cb}
- Engineering measurements: e. g. absolute \mathcal{B} 's (& some inclusive ones, i.e. $D^{o,+} \rightarrow \phi X$)
- New Physics: May see in charm directly
 SM CPV suppressed, perhaps also rare decays & mixing


Use of Charm data to improve B measurements, etc..

Some examples:

Item: B_s mixing

To relate constraints on CKM matrix in terms of say ρ & η need to use theoretical estimates of $f_{B_c}^2 B_{B_c} / f_{B_c}^2 B$ CLEO-c's job: Measure f_D/f_D+ to check theoretical lattice calculations, best unquenched lattice.

Artists view of current constraints $\pm 1\sigma$ bands, not precise

Idea is that (η,ρ) can be determined in several ways, differences will indicate new physics

Leptonic Decays: $D \rightarrow \ell^+ \nu$

Introduction: Pseudoscalar decay constants: c and \bar{q} can annihilate, probability is ∞ to wave function overlap Example :

In general for all pseudoscalars:

 $\Gamma(\mathbf{P}^+ \to \ell^+ \nu) = \frac{1}{8\pi} G_F^2 f_P^2 m_\ell^2 M_P \left(1 - \frac{m_\ell^2}{M_P^2} \right)^2 |V_{Qq}|^2$

Calculate, or measure if V_{Og} is known

Experimental methods

 DD production at threshold: used by Mark III, and more recently by CLEO-c and BES-II.

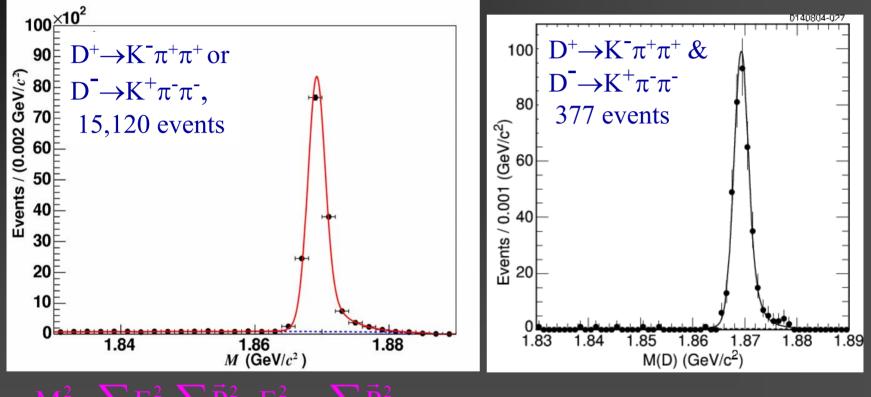
Unique event properties
 Only DD not DDx produced

Large cross sections:

 $\sigma(D^{\circ}D^{\circ}) = 3.72\pm0.09$ nb $\sigma(D^{+}D^{-}) = 2.82\pm0.09$ nb

> Ease of B measurements using "double tags"

■ *B*_A = # of A/# of D's

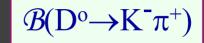

 B-factories (e⁺e⁻) + fixed target & collider experiments at hadron machines

•D displaced vertex •D^{*+} $\rightarrow \pi^+ D^0$ tag

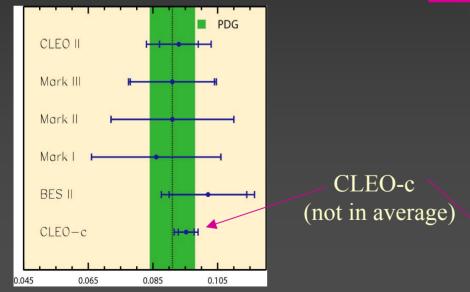
$D^+ \rightarrow K^- \pi^+ \pi^+$ at the ψ'' (CLEO-c)

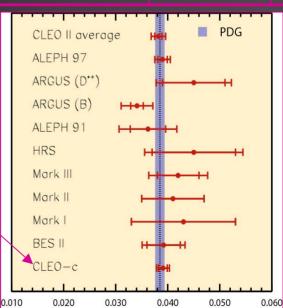
Single tags

Double


57 pb⁻¹ of data at $\psi(3770)$, CLEO now has 281 pb⁻¹

Absolute *B* Results

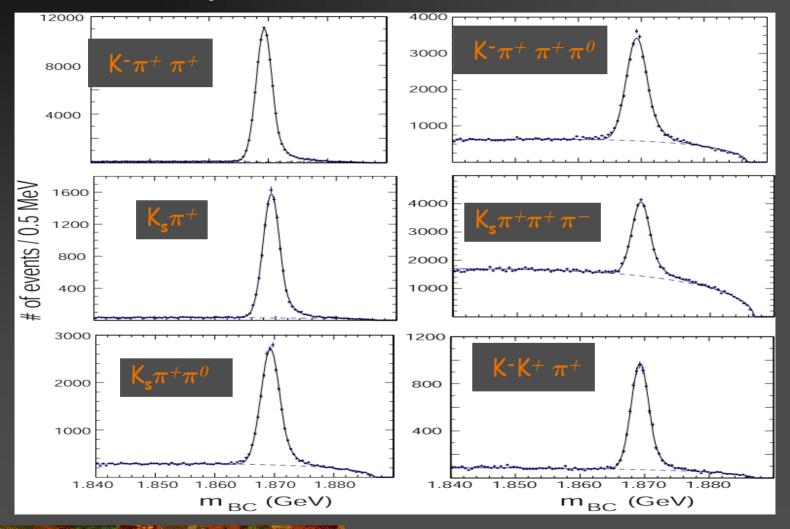

$$\mathcal{B}(D^+ \rightarrow K^- \pi^+ \pi^+)$$


Three best measurements

Three best measurements

B (%)	Error(%)	Source	B (%)	Error(%)	Source
9.3±0.6±0.8	10.8	CLEO II	3.82±0.07±0.12	3.6	CLEO II
9.1±1.3±0.4	14.9	MK III	3.90±0.09±0.12	3.8	ALEPH
9.52 ±0.25±0.27	3.9	CLEO-c	3.91±0.08 ±0.09		

Leptonics & Semileptonics at CLEO-c

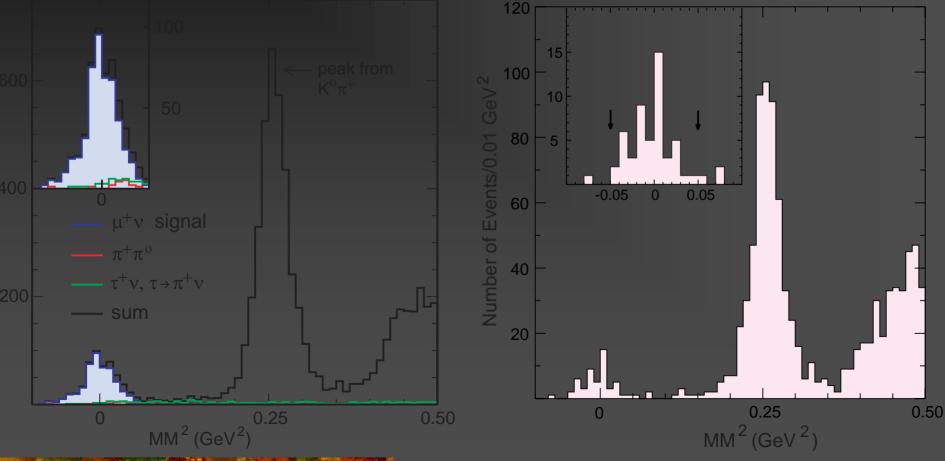

- Ease of leptonic & semileptonic decays using double tags & MM² technique
 - $MM^{2} = (E_{D} E_{\ell} E_{hadrons})^{2} (\vec{p}_{D} \vec{p}_{\ell} \vec{p}_{hadrons})^{2}$ We know $E_{D} = E_{beam}$, $\vec{p}_{D} = -\vec{p}_{D}$
- Search for peak near MM²=0
- Since resolution ~ M²_{π^o}, reject extra particles with calorimeter & tracking
- Note that this method can be used to evaluate systematic errors on ε, simply by using double tags with one missing track
- Sometimes people use $U_{miss} = E_{miss} |P_{miss}|$

Technique for $D^+ \rightarrow \mu^+ \nu$

- Fully reconstruct one D[±]
- Seek events with only one additional charged track and no additional photons > 250 MeV to veto D⁺ $\rightarrow \pi^{+}\pi^{0}$
- Charged track must deposit only minimum ionization in calorimeter
- Compute MM^{2:} If close to zero then almost certainly we have a μ⁺ν decay

Single Tag Sample

From 281 pb⁻¹



11

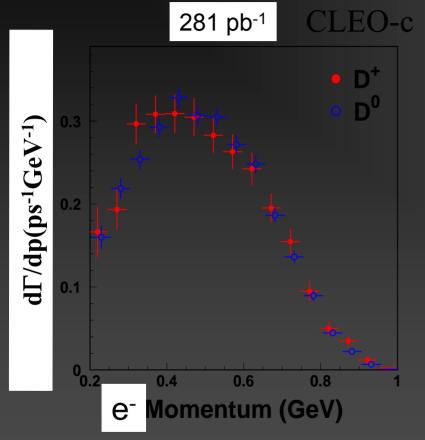
Measurement of f_D+

MC Expectations from 1.7 fb⁻¹, 6X this sample

Data have 50 signal events in 281 pb⁻¹

Deriving a Value for f_D+

Backgrounds			
Mode	<i>B</i> (%)	# Events	
$\pi^+\pi^0$	0.13±0.02	1.40±0.18±0.22	
${ m K}^0\pi^+$	2.77±0.18	0.33±0.19±0.02	
$\tau^+ \nu \ (\tau \rightarrow \pi^+ \nu)$	2.65* <i>B</i> (D+→μ+ν)	1.08 ±0.15±0.02	
Other D ⁺ , D ^o	0	<0.4, <0.4 @ 90% cl	
+ Continuum	0	<1.2 @ 90% c.l.	
Total		$2.81 {\pm} 0.30^{+0.84}_{-0.27}$	


Tags are 158,354 events
\$\mathcal{B}(D^+ \rightarrow \mu^+ \nu) = (4.40 \pm 0.66^{+0.09}_{-0.12}) \mathbf{x} 10^{-4}_{-0.12}) \mathbf{x} 10^{-4}_{-0.12} = (222.6 \pm 16.7^{+2.3}_{-3.4}) \mathbf{MeV}\$
\$\mathcal{B}(D^+ \rightarrow e^+ \nu) < 2.4 \mathbf{x} 10^{-5} @ 90\% c.l.\$

Efficiencies: μ^+ detection (69.4%); extra shower (96.1%); correction for easier tag reconstruction in $\mu^+\nu$ events (1.5%)

Comparison to Theory

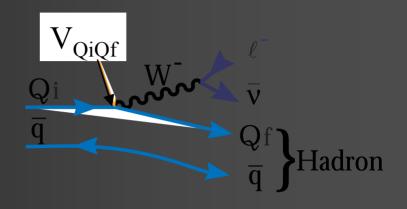
BES	EXPERIMEN	Т		
measurement	CLEO-c			
based on				
2.67±1.74				
events				
Current Lattice ———	201±3±17 MeV		Lattice QCD (FNAL & MILC) Lattice QCD Exact Chir	
measurement			Quenched Lattice QCD (UK	, in the second s
(unquenched			Quenched Lattice QCD	
light flavors) is	F		QCD Spectral Sum Rules	
consistent			QCD Sum Rules	
But systematic			Relativistic Quark Mo	odel
errors on theory			Potential Model	
& statistical			Isospin Mass Sp	littings
errors on data		1	1	
are still large	100	200	$\frac{300}{f}$	400

Inclusive semileptonic branching fractions

preliminary

Lab momentum spectrum – no FSR correction

FLAVOUR IN THE ERA OF THE LHC, Nov. 7-10, 200

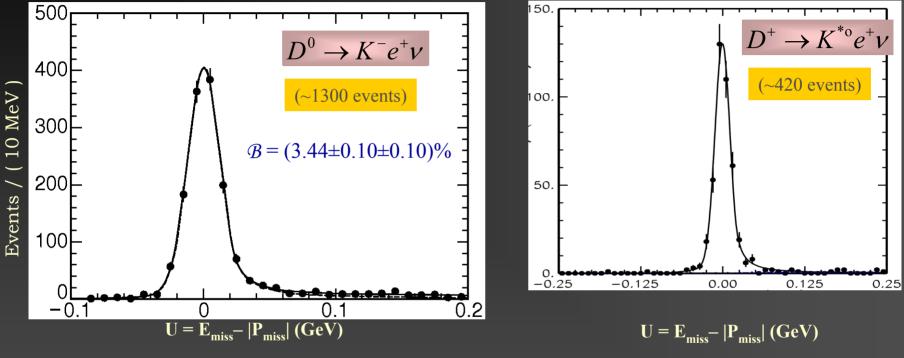

- Tagged sample: only "golden modes"
 D⁰→K⁻π⁺ and D⁺→K⁻π⁺π⁺
- Identify *e*, π, K right-sign and wrongsign samples, use unfolding matrix→true *e* population.
- Correction for p_e- cut

 $B(D^{+} \rightarrow Xev) = (16.19 \pm 0.20 \pm 0.36)\%$ $\sum B(D^{+} \rightarrow Xev)_{excl} = (15.1 \pm 0.50 \pm 0.5)\%$ $B(D^{0} \rightarrow Xev) = (6.45 \pm 0.17 \pm 0.15)\%$ $\sum B(D^{0} \rightarrow Xev)_{excl} = (6.1 \pm 0.2 \pm 0.2)\%$ $\frac{\Gamma(D^{+} \rightarrow Xe^{+}v)}{\Gamma(D^{0} \rightarrow Xe^{+}v)} = 1.01 \pm 0.03 \pm 0.03$

Exclusive Semileptonic Decays

♦ Best way to determine magnitudes of CKM elements, in principle is to use semileptonic decays. Decay rate α|V_{QiQf}|²
 ♦ This is how V_{µs} (λ) and V_{cb}

(A) have been determined



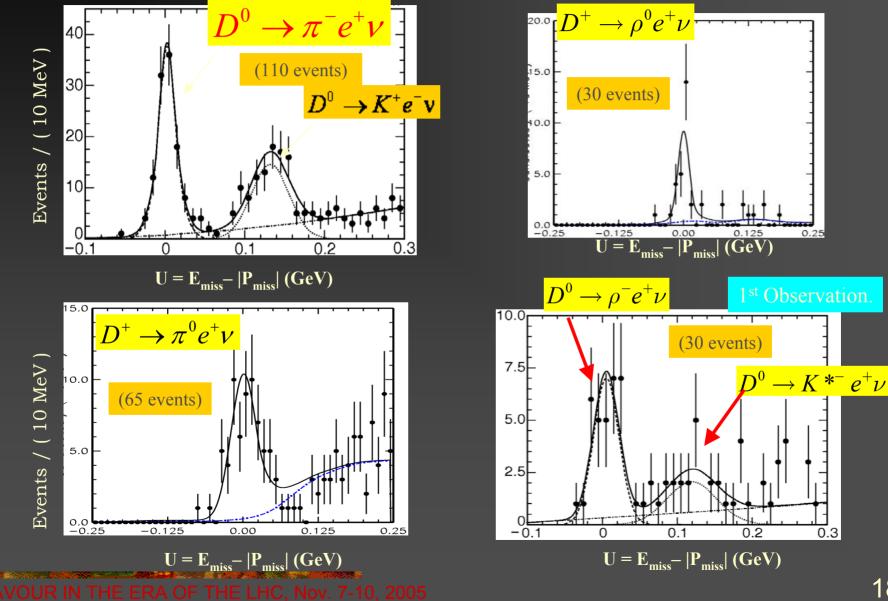
• Kinematics:
$$q^2 = (p_D^{\mu} - p_{hadron}^{\mu})^2 = m_D^2 + m_P^2 - 2E_P m_D$$

Matrix element in terms of form-factors (for D→Pseudoscalar ℓ⁺ ν

$$\left\langle P(P_P) \left| J_{\mu} \right| D(P_D) \right\rangle = f_+(q^2)(P_D + P_P)_{\mu} + f_-(q^2)(P_D - P_P)_{\mu} \right.$$

$$\left\langle \text{For } \ell = e, \text{ contribution of } f_-(q^2) \rightarrow 0 \right.$$

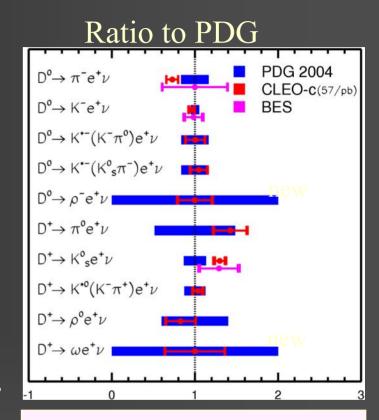
Cabibbo Favored Semileptonic Decays



 $\mathcal{B} = (5.70 \pm 0.28 \pm 0.25)\%$

These are the dominant modes, so backgrounds are almost non-existent

Cabibbo Suppressed Semileptonic Decays



Summary of Semileptonic Branching Ratio Results

	Decay Mode	B (%) (CLEO-c/(57/pb))	B (%) (PDG-04)
1.	$D^0 ightarrow \pi^- e^+ \nu$	$0.26 \pm 0.03 \pm 0.01$	0.36 ± 0.06
2.	$D^0 ightarrow K^- e^+ u$	$3.44 \pm 0.10 \pm 0.10$	3.58 ± 0.18
3.	$D^0 ightarrow K^{st-}(K^-\pi^0) e^+ u$	$2.16 \pm 0.24 \pm 0.11$	2.15 ± 0.35
4.	$D^0 \to K^{*-}(K^0_S \pi^-) e^+ \nu$	$2.25 \pm 0.21 \pm 0.11$	2.15 ± 0.35
5.	$D^0 ightarrow ho^- e^+ u$	$0.19 \pm 0.04 \pm 0.02$	
6.	$D^+ ightarrow \pi^0 e^+ u$	$0.44 \pm 0.06 \pm 0.03$	0.31 ± 0.15
7.	$D^+ ightarrow ar{K}^0 e^+ u$	$8.71 \pm 0.38 \pm 0.37$	6.7 ± 0.9
8.	$D^+ ightarrow ar{K}^{st 0} (K^- \pi^+) e^+ u$	$5.70 \pm 0.28 \pm 0.25$	5.5 ± 0.7
9.	$D^+ ightarrow ho^0 (\pi^+ \pi^-) e^+ u$	$0.21 \pm 0.04 \pm 0.02$	0.25 ± 0.10
10.	$D^+ \rightarrow \omega (\pi^+ \pi^- \pi^0) e^+ \nu$	$0.17 \pm 0.06 \pm 0.01$	

 Using unquenched lattice (hep-ph/0408306) find
 V_{cs} = 0.956±0.036±0.093±0.017
 V_{cd} = 0.213±0.008±0.020±0.008 stat sys exp lat lat CLEC

FLAVOUR IN THE ERA OF THE LHC, Nov. 7-10, 2009

 V_{cs} (LEP) = 0.976±0.014 V_{cd} (vN) = 0.224±0.012 Currently this checks Lattice calculations

Combining Semileptonics & Leptonics

• Decay rate: $\frac{d\Gamma(D \to Pev)}{dq^2} = \frac{\left|V_{cq}\right|^2 P_p^3}{24\pi^3} \left|f_+(q^2)\right|^2$

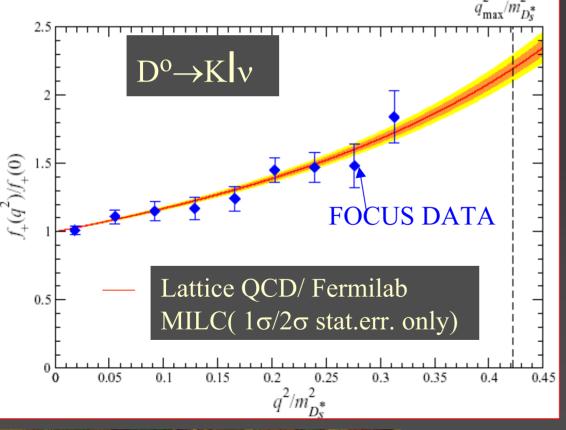
- Test of models in D decays: predictions of shapes of form factors (for D→Vector ℓ⁺v there are 3 form-factors)
- Note that the ratio below depends only on QCD: $d\Gamma(D^+ \to \pi e \nu) = P_{\pi}^3 |f_+(q^2)|^2$

Lattice comparison: f_D and semileptonic ff

We can use a quantity independent of V_{cd} to do a CKM independent lattice check:

$$R_{\ell sl} \equiv \sqrt{\frac{\Gamma(D^+ \to \mu \upsilon)}{\Gamma(D^+ \to \pi \ell \upsilon)}} \propto \frac{f_D}{f_+^{\pi}(0)}$$

• I obtain:


$$R_{\ell sl}^{th} = 0.22 \pm 0.02$$

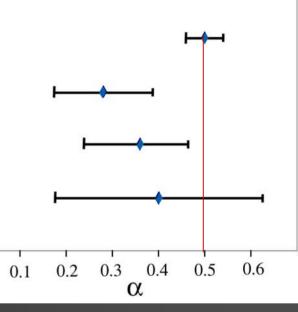
$$R_{\ell sl}^{exp} = 0.25 \pm 0.02$$

Theory and data consistent at ~30% C.L.

Lattice comparison – the shape of $f_+(q^2)$

• Modern parameterization of the form factors proposed by Becirevic & Kaidalov (BK): $f_+(x) = f_+(0) \left(\frac{1}{(x-2)^2} + \frac{1}{(x-2)^2} \right)$

Representing contributions beyond the lowest lying resonances (D*)

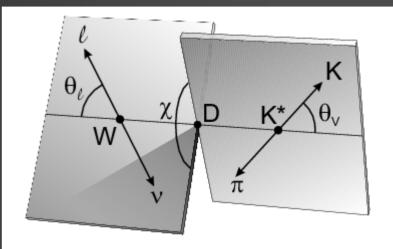

Another model by Fajfer and Kamenik shows that including the next radial excitation in ff gives good fits to measured branching fractions.

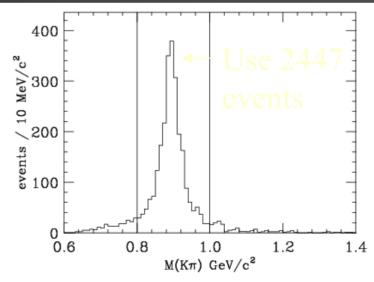
Fajfer et al. hep-ph/0506051 and 0412140

Form Factor shapes

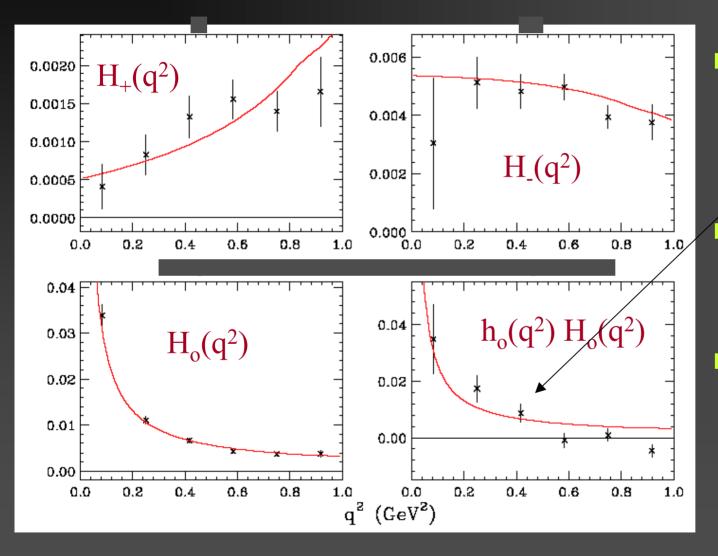
Lattice (Fermilab-MILC hep-ph/0408306)	0.50±0.04(stat)
FOCUS	0.28 ±0.08 ±0.07
CLEO III	0.36 ±0.10 ^{+0.03} _{-0.07}
Belle	0.40 ±0.12 ±0.19

Lattice (Fermilab-MILC hep-ph/0408306)	0.44 ±0.04(stat)
CLEO III	0.37 $^{+0.20}_{-0.31}\pm0.15$
Belle	0.03 ±0.27±0.13




$D^+ \rightarrow K^- \pi^+ e^+ \nu$ Form Factors

K⁻π⁺ mostly K* with some
 S-wave (1st seen by FOCUS)
 For D→V e⁺ν, use 3 helicity amplitudes H_o(q²), H₊(q²), & H₋(q²)


Add h_o(q²)•H_o(q²) to account for s-wave term

Use 281 pb⁻¹

Form Factor Results

Significant s-wave amplitude confirmed Parameter -ization not great No evidence for d or f wave

- This important part of b physics is and will continue to be dominated by theoretical errors in the LHC era
- New methods can lead to more precise resultsTheory
 - Heavy Quark Symmetry predicts that form-factor for a V_{ub} decay, say B→πℓν is the same as for D→πℓν at the same invariant 4 velocity, modulo corrections
 - Double Ratios:

Grinstein, [hep-ph/9308226]

$$f_{+}^{(B \to K)} / f_{+}^{(D \to K)} = \sqrt{m_b / m_c}$$
$$f_{+}^{(B \to \pi)} / f_{+}^{(D \to \pi)} = \sqrt{m_b / m_c}$$

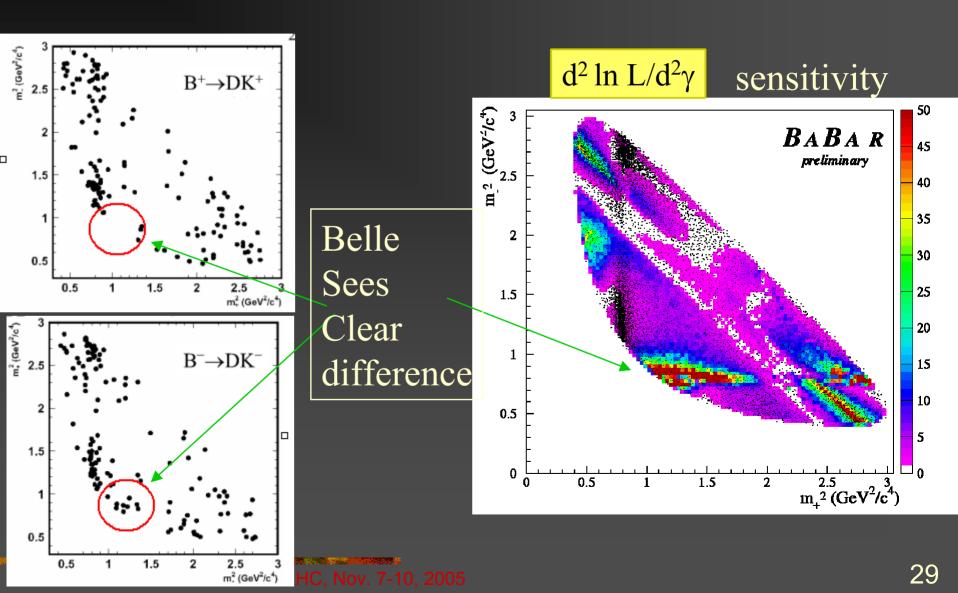
V_{ub} Theory

Thus $\frac{f_{+}^{(B \to K)} / f_{+}^{(B \to \pi)}}{f_{+}^{(D \to K)} / f_{+}^{(D \to \pi)}} = 1$

Specifically for Vector modes:

$$\frac{\mathrm{d}\Gamma(\bar{B} \to \rho e\nu)/\mathrm{d}q^2}{\mathrm{d}\Gamma(\bar{B} \to K^* \ell^+ \ell^-)/\mathrm{d}q^2} = \frac{|V_{ub}|^2}{|V_{tb}V_{ts}^*|^2} \cdot \frac{8\pi^2}{\alpha^2} \cdot \frac{1}{|C_9^{\mathrm{eff}}(1+\delta(q^2))|^2 + |C_{10}|^2} \frac{\sum_{\lambda} |H_{\lambda}^{B \to \rho}(q^2)|^2}{\sum_{\lambda} |H_{\lambda}^{B \to K^*}(q^2)|^2}$$

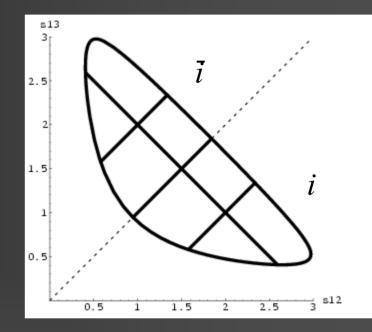
the $H_{\lambda}^{(V)}(q^2)$ amplitudes for rare $B \to V \ell^+ \ell^-$ decays are related at leading order in Λ/m_b to those for semileptonic decay $B \to V e \bar{\nu}$ with a common proportionality factor


$$H_{\lambda}^{(V)}(q^2) = C_9^{\text{eff}}(1 + \delta(q^2) + O(\Lambda/m_b))H_{\lambda}(q^2).$$
(91)

See Grinstein & Pirjol [hep-ph/0404250]

$B^{\pm} \rightarrow D^{o}K^{\pm}$ decays, $D^{o} \rightarrow K_{s}\pi^{+}\pi^{-}$

Use Daltiz plot analysis to find γ see A. Giri et al., [hep-ph/0303187] W ■ For the B⁻ decay: $A(B^{-} \rightarrow D^{\circ}K^{-}) \equiv A_{R}$ $A(B^{-} \rightarrow \overline{D}^{\circ} K^{-}) \equiv A_{B} r_{B} e^{i(\delta_{B} - \gamma)}$ For the D^o decay: $A_{D}(s_{12},s_{13}) \equiv A_{12,13}e^{i\delta_{12,13}} \equiv A(D^{o} \rightarrow K_{S}(p_{1})\pi^{-}(p_{2})\pi^{+}(p_{3}))$ $=\overline{A(D^{\circ} \rightarrow K_{S}(p_{1})\pi^{+}(p_{2})\pi^{-}(p_{3}))},$ where $s_{ii} = (p_i + p_i)^2$ (the mass) Similar relations for B⁺


Dalitz Plot Sensitivity

$D^{o} \rightarrow K_{s} \pi^{+} \pi^{-}$ Dalitz Analysis

Partition Dalitz plot

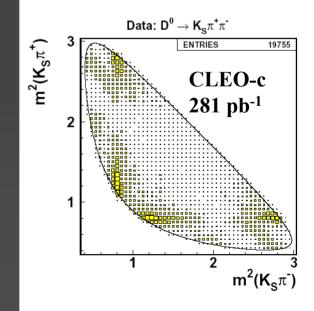
$$c_{i} \equiv \int_{i} dp \ A_{12,13} \ A_{13,12} \ \cos(\delta_{12,13} - \delta_{13,12}),$$

$$s_{i} \equiv \int_{i} dp \ A_{12,13} \ A_{13,12} \sin(\delta_{12,13} - \delta_{13,12}),$$

$$T_{i} \equiv \int_{i} dp \ A_{12,13}^{2},$$

For the k bins, each denoted by *i*, form 4k equations: with variables c_i , s_i , r_B , δ_B , γ

CLEO-c Can Measure c_i


$A(D_{\pm}^{0} \to K_{S}(p_{1})\pi^{-}(p_{2})\pi^{+}(p_{3})) = \frac{1}{\sqrt{2}} \left(A_{D}(s_{12}, s_{13}) \pm A_{D}(s_{13}, s_{12}) \right), \tag{14}$

$$d\Gamma(D_{\pm}^{0} \to K_{S}(p_{1})\pi^{-}(p_{2})\pi^{+}(p_{3})) = \frac{1}{2} \left(A_{12,13}^{2} + A_{13,12}^{2} \right) \pm A_{12,13}A_{13,12}\cos(\delta_{12,13} - \delta_{13,12})dp.$$

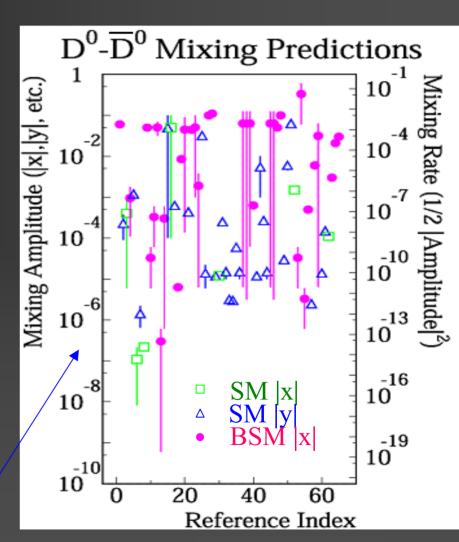
where we defined $D^0_{\pm} \equiv (D^0 \pm \overline{D}^0)/\sqrt{2}$. With these relations, one readily obtains

$$c_i = \frac{1}{2} \left[\int_i d\Gamma(D^0_+ \to K_S(p_1)\pi^-(p_2)\pi^+(p_3)) - \int_i d\Gamma(D^0_- \to K_S(p_1)\pi^-(p_2)\pi^+(p_3)) \right].$$
(15)

- Measure Dalitz plot opposite a CP eigenstate tag such as K⁺K⁻ or K_s\$.
- Supplies k of 2k+3 unknowns
- Accuracy will depend on statistics
- Other δ's will also be measured, such as K⁻π⁺ and K^{*±}K[±]

Searches for New Physics in Charm Decays

D°-D° Mixing

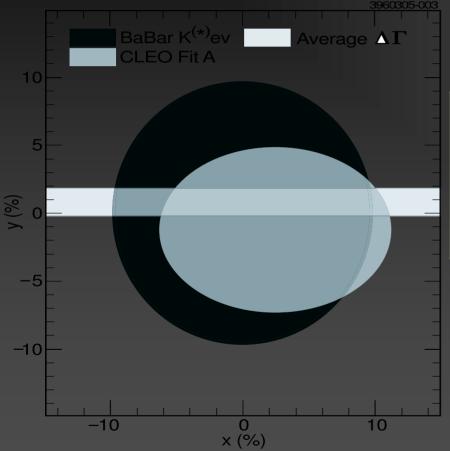

Mixing could proceed via

Do

the presence of d-type quarks in the loop makes the SM expectations for D^o- D^o mixing

small compared with systems involving u-type quarks in the box diagram because these loops include 1 dominant super-heavy quark (t): K° (50%), B° (20%) & B_s (50%)

 New physics in loops implies x =ΔM/Γ>> y =ΔΓ /2Γ; but long range effects complicate predictions


From H. Nelson

D^o- D^o mixing: the data

- The study of D^o wrong-sign Kπ yields has been a key step in our experimental study of D^o D^o mixing.
- Caveats:
 - Complicated by interference between DCSD & mixing [strong phase $\delta \Rightarrow$ data constrain only x' & y']
 - Complicated by CP violation

Experiment	X′ ² (95 % C.L.) (X10 ⁻³)	y′(95% C.L.) (X10⁻³)
Belle (2004)	0.81	-8.2 <y′<16< td=""></y′<16<>
BaBar (2003)	2.2	-56 <y'<39< td=""></y'<39<>
FOCUS (2001)	1.52	-124 <y'<-5< td=""></y'<-5<>
CLEO (2000)	0.82	-58 <y′<10< td=""></y′<10<>

D^o D^o mixing: the data II

•D° semileptonic decays: $R_{ws} = \frac{1}{2}(x^2+y^2)$ [no strong phase δ]

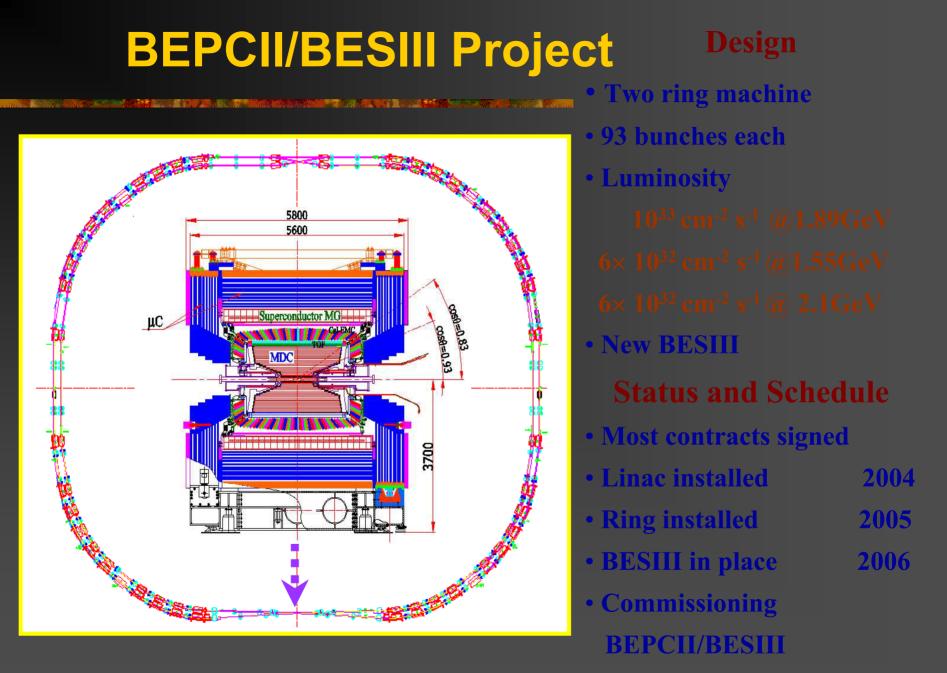
Experiment	R _M (95% CL)	$\sqrt{x^2+y^2}$
BaBar 04	0.0046	0.1
Belle 05	0.0016	0.056

•Dalitz plot analysis of $D^0 \rightarrow K_s^0 \pi^+ \pi^-$ (CLEO II.V) comparable sensitivity

CP/T Violation

- Unexpectedly large CP violation asymmetries may be a better signature for new physics (0.01-0.001)
- CP violation can be studied in a variety of ways:
 - Direct CP violation
 - CP violation in mixing
 - T violation in 4-body decays of D⁰/D⁺ (assuming CPT) and studying triple product correlations
 - Exploiting quantum coherence of \overline{DD} produced in $\psi(3770)$ decays

CP/T Violation: some recent data



Experiment	Decay mode	A _{CP} (%)	Notes
BaBar	$D^+ \rightarrow K^- K^+ \pi^+$	1.4±1.0 ±0.8	
BaBar	$D^+ \rightarrow \phi^+ \pi^+$	0.2±1.5±0.6	Res. Substr.
BaBar	$D^+ \to \mathrm{K}^{*0} \mathrm{K}^+$	0.9±1.7±0.7	Of D⁺→K⁺K⁺π⁺
CLEO II.V	$D^0 \rightarrow \pi^+ \pi^- \pi^0$	1 ⁺⁹ ₋₇ ±8	Dalitz plot analysis
CDF	$D^0 \rightarrow K^+K^-$	$2.0 \pm 1.2 \pm 0.6$	Direct CPV
CDF	$D^0 \rightarrow \pi^+ \pi^-$	$1.0 \pm 1.3 \pm 0.6$	Direct CPV
FOCUS	$D^0 \rightarrow K^+ K^- \pi^+ \pi^-$	1.0 ±5.7±3.7	T violation through triple
FOCUS	$D^+ \rightarrow K^{o}K^{+}\pi^{+}\pi^{-}$	2.3 ±6.2±2.2	product
FOCUS	$D_S \rightarrow K^o K^+ \pi^+$	-3.6 ±6.7±2.3	correlations

FLAVOUR IN THE ERA OF THE LHC, Nov. 7-10, 2005

Future

- Immediate: Take data on D_s
- CLEO runs until sometime in 2008. Most of the running is now planned to be on ψ" & ψ(4160) for D_s, with some on ψ'
- Errors will depend on how much data CLEO-c gets on charm
- Beijing has started building a two-ring machine for this physics with much more projected luminosity

FLAVOUR IN THE ERA OF THE LHC, Nov. 7-10, 2005

beginning of 2007₃₉

Backup Slides

and a second second

Exclusive branching fractions

Decay Mode	B(%) (CLEO-c)	B(%) (BES-II)	B(%) (Artuso's avg including others)
D°→K⁻e⁺v _e	3.44±0.10±0.10	3.82±0.40±0.27	3.54±0.11
$D^{o} \rightarrow \pi^{-}e^{+}v_{e}$	0.262±0.025±0.008	0.33±0.13±0.03	0.285±0.018
Dº→K*-e+v _e	2.16±0.15±0.08		2.14±0.16
$D^{o} \rightarrow \rho^{-} e^{+} v_{e}$	0.194±0.039±0.013		
D+→Koe+ve	8.71 ±0.38±0.37		8.31±0.44
$D^+ \rightarrow \pi^o e^+ v_e$	0.44±0.06±0.03		0.43±0.06
D+→K*oe+v _e	5.56±0.27±0.23		5.61±0.32
$D^+ \rightarrow \rho^o e^+ v_e$	0.21±0.04±0.01		0.22±0.04
D⁺→∞°e⁺v _e	$0.16^{+0.07}_{-0.01} \pm 0.01$		

Measurements of γ in B[±] decays

- D^o Dalitz plot analyses to improve the measurement of γ using B[±] \rightarrow D^oK[±] decays, for example D^o \rightarrow K_s $\pi^+\pi^-$
- Measurement of relative strong decay phase used in ADS method using B[±]→D^oK[±] decays, where, for example, the interference between D^o→K⁺π⁻ and DCSD decays is used
- Measurement of relative strong decay phase used in B[±]→D^oK[±] decays, where D^o→K^{*±}K[∓] is used
- Important to measure γ this way and B_s →D_sK[±], because one uses B_s mixing and the other is mostly tree level so if different would point directly to new physics source

Other Items Useful for B decays

Measurement of semileptonic decay formfactors that will allow use of exclusive B decays to measure V_{ub} with good precision via "double ratios"

- Much improved absolute branching ratios
- Measurement of strong phase used in D^o-D^o mixing
- Measurement of inclusive decay rates

Are Babar & Belle compatible?

compatible?

Babar Belle DK: $r_B = 0.118 \pm 0.079 \pm 0.034 \begin{array}{c} +0.036 \\ -0.034 \end{array}$ $r_{\rm R} = 0.21 \pm 0.08 \pm 0.03 \pm 0.04$ $\delta_{R} = (157 \pm 19 \pm 11 \pm 21)^{\circ}$ $\delta_{B} = (104 \pm 45 + 17 + 16)^{\circ}$ $D^*K: r_R^* = 0.169 \pm 0.096^{+0.030}_{-0.028} + 0.029_{-0.026}$ $r_{B}^{*} = 0.12 + 0.16 \pm 0.02 \pm 0.04$ $\delta_{R}^{*} = (296 \pm 41 + 14) + 15)^{\circ}$ $\delta_{R}^{*} = (321 \pm 57 \pm 11 \pm 21)^{\circ}$ Different r_B values *DK** : generate very different $r_{R}(K^{*}) = 0.25 + 0.17 \pm 0.09 \pm 0.04 \pm 0.08$ errors. If r_B is fixed are $\delta_{R}(K^{*}) = (353 \pm 35 \pm 8 \pm 21 \pm 49)^{\circ}$ results for γ $\gamma = (112 \pm 35 \pm 9 \pm 11 \pm 8)^{\circ}$

Measuring δ at CLEO-c

For C=-1 $D^{\circ}\overline{D}^{\circ}$ states such as the ψ''

$$\Gamma^{(-)}(K^{-}\pi^{+}, S_{\zeta}) = A^{2}A^{2}_{S_{\zeta}}|1 + \zeta r e^{-i\delta}|^{2}(1 + y^{2}) \approx A^{2}A^{2}_{S_{\zeta}}(1 + 2\zeta r \cos \delta) .$$

Thus by using both ζ=-1 & ζ=+1 & the fact that r has been measured, cosδ can be determined
 For C=+1 D^oD^o states

$$\Gamma^{(+)}(K^-\pi^+, S_{\zeta}) = A^2 A_{S_{\zeta}}^2 |1 - \zeta r e^{-i\delta}|^2 (1 - 2\zeta y + 3y^2) \approx A^2 A_{S_{\zeta}}^2 (1 - 2\zeta r \cos \delta) (1 - 2\zeta y) .$$

Here y and $\cos\delta$ are coupled

See Gronau, Grossman & Rosner hep-ph/0103110]

ADS Method for Measuring γ

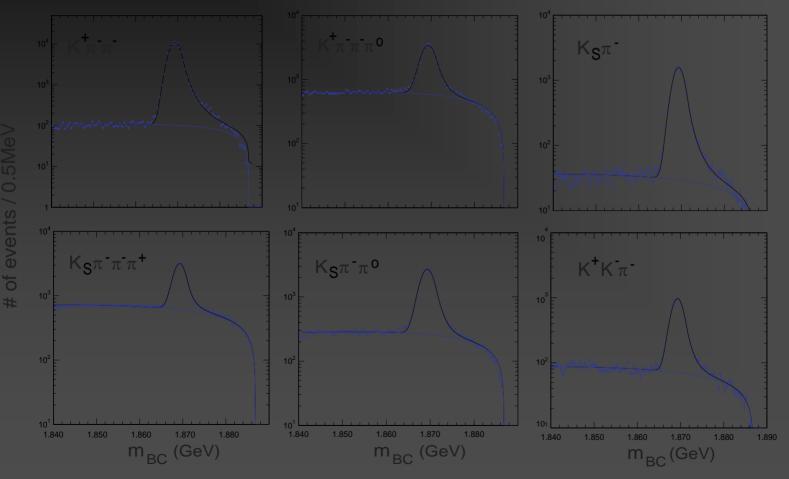
- ADS: Atwood, Duniez & Soni Phys. Rev. Lett. 78, 3257 (1997)
- This is based on an older method of Gronau, London & Wyler that is more difficult to apply mys Lett 1253, 483 (1991); Phys. Lett. B265, 172 (1991); Gronau, Phys. Lett. B557, 198 (2003)
- Consider B⁻→D^oK⁻ & B⁻→D^oK⁻ where the D^o again goes to states f_i common to both D^o & D^o. These can be states like K⁻π⁺ which interfere due to DCSD or even CP eigenstates, but they can't all be CP eigenstates or we are back in

Measuring δ at CLEO-c

For C=-1 $D^{\circ}\overline{D}^{\circ}$ states such as the ψ''

$$\Gamma^{(-)}(K^{-}\pi^{+}, S_{\zeta}) = A^{2}A^{2}_{S_{\zeta}}|1 + \zeta r e^{-i\delta}|^{2}(1 + y^{2}) \approx A^{2}A^{2}_{S_{\zeta}}(1 + 2\zeta r \cos \delta) .$$

Thus by using both ζ=-1 & ζ=+1 & the fact that r has been measured, cosδ can be determined
 For C=+1 D^oD^o states


$$\Gamma^{(+)}(K^-\pi^+, S_{\zeta}) = A^2 A_{S_{\zeta}}^2 |1 - \zeta r e^{-i\delta}|^2 (1 - 2\zeta y + 3y^2) \approx A^2 A_{S_{\zeta}}^2 (1 - 2\zeta r \cos \delta) (1 - 2\zeta y) .$$

Here y and $\cos\delta$ are coupled

See Gronau, Grossman & Rosner hep-ph/0103110]

Problem: how many events?

 Fits to Asymmetric signal function (Crystal Ball shape) plus smooth background shape (ARGUS function) – error in tags ±0.3%

ADS Method for Measuring γ

- ADS: Atwood, Duniez & Soni Phys. Rev. Lett. 78, 3257 (1997)
- This is based on an older method of Gronau, London & Wyler that is more difficult to apply Phys Lett. B253, 483 (1991); Phys. Lett. B265, 172 (1991); Gronau, Phys. Lett. B557, 198 (2003)
- Consider B⁻→D^oK⁻ & B⁻→D^oK⁻ where the D^o again goes to states f_i common to both D^o & D^o. These can be states like K⁻π⁺ which interfere due to DCSD or even CP eigenstates, but they can't all be CP eigenstates or we are back in

What about fos?

Model	f_{D+} (MeV)	$f_{D_{*}^{+}}/f_{D^{+}}$
Lattice $(n_f=2+1)$ [13]	$201 \pm 3 \pm 17$	$1.24 \pm 0.01 \pm 0.07$
Lattice $(n_f=2)$ (CP-PACS) [14]	$202 \pm 12^{+20}_{-25}$	$1.18\pm0.09\pm xx$
Quenched Lattice (Taiwan) [15]	$235\pm8\pm14$	$1.13 \pm 0.03 \pm 0.05$
Quenched Lattice (UKQCD) [16]	$210 \pm 10^{+17}_{-16}$	$1.13 \pm 0.02^{+0.04}_{-0.02}$
Quenched Lattice [17]	$211 \pm 14^{+0}_{-12}$	1.10 ± 0.02
QCD Spectral Sum Rules [18]	203 ± 20	1.15 ± 0.04
QCD Sum Rules [19]	195 ± 20	
Relativistic Quark Model [20]	243 ± 25	1.10
Potential Model [21]	238	1.01
Isospin Mass Splittings [22]	262 ± 29	

• CLEO-c will start scan to determine best place to run for D_s now; will also measure $\mathcal{B}(D_s \rightarrow \phi \pi^+)$

Old determinations of fD_S are too poor to use

Systematic Errors

Source of Error	%
Finding the µ ⁺ track	0.7
Minimum ionization of μ^+ in EM cal	1.0
Particle identification of μ^+	1.0
MM ² width	1.0
Extra showers in event > 250 MeV	0.5
Number of single tag D ⁺	0.6
Monte Carlo statistics	0.4
Background	+ 0.6, -1.7
Total	+2.1, -2.5

ADS: more details

a is the dominant mode, while b is suppressed:

$$a = \mathcal{B}(B^- \to K^- D^0) \tag{6.117}$$

$$b = \mathcal{B}(B^- \to K^- \bar{D}^0) \tag{6.118}$$

$$c(f_1) = \mathcal{B}(D^0 \to f_1), \qquad c(f_2) = \mathcal{B}(D^0 \to f_2)$$
 (6.119)

$$c(\bar{f}_1) = \mathcal{B}(D^0 \to \bar{f}_1), \qquad c(\bar{f}_2) = \mathcal{B}(D^0 \to \bar{f}_2) \tag{6.120}$$

$$d(f_1) = \mathcal{B}(B^- \to K^- f_1), \qquad d(f_2) = \mathcal{B}(B^- \to K^- f_2)$$
 (6.121)

$$\bar{d}(f_1) = \mathcal{B}(B^+ \to K^+ f_1), \qquad \bar{d}(f_2) = \mathcal{B}(B^+ \to K^+ f_2)$$
 (6.122)

Assume that we can measure the quantities $a, c(f_1), c(f_2), c(\bar{f}_1), c(\bar{f}_2), d(f_1), d(f_2), \bar{d}(f_1)$ and $\bar{d}(f_2)$ but not b.

ADS: more details II

We can express $d(f_1)$ in terms of $a, b, c(f_1), c(\overline{f_1})$, the strong phase ξ_1 and the weak phase γ .

$$d(f_1) = a \times c(f_1) + b \times c(\bar{f}_1) + 2\sqrt{a \times b \times c(f_1) \times c(\bar{f}_1)} \cos(\xi_1 + \gamma)$$

$$(6.123)$$

$$\bar{d}(f_1) = a \times c(f_1) + b \times c(\bar{f}_1) + 2\sqrt{a \times b \times c(f_1) \times c(\bar{f}_1)} \cos(\xi_1 - \gamma)$$
(6.124)

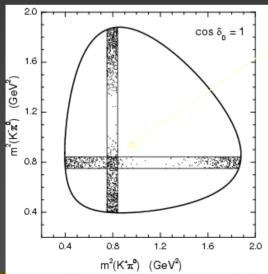
$$d(f_2) = a \times c(f_2) + b \times c(\bar{f}_2) + 2\sqrt{a \times b \times c(f_2) \times c(\bar{f}_2)} \cos(\xi_2 + \gamma)$$

$$(6.125)$$

$$\bar{d}(f_2) = a \times c(f_2) + b \times c(\bar{f}_2) + 2\sqrt{a \times b \times c(f_2) \times c(\bar{f}_2)} \cos(\xi_2 - \gamma)$$
(6.126)

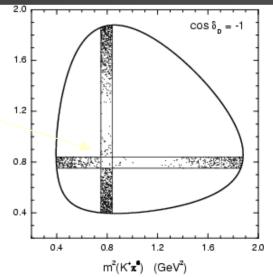
These four equations contain the four unknowns ξ_1, ξ_2, b and γ which can be determined up to discrete ambiguities. Adding additional decay modes will reduce the ambiguities. The strong phases ξ_i are related to the *D* decay phase shifts δ_i by the relation :

$$\xi_1 - \xi_2 = \delta_1 - \delta_2. \tag{6.127}$$


• $\zeta_1 - \zeta_2 \equiv \text{can be measured at CLEO-c, by choosing } f_2$ as a CP eigenstate • More modes can be added

FLAVOUR IN THE ERA OF THE LHC, Nov. 7-10, 2005

$B^{\pm} \rightarrow D^{\circ}K^{\pm}$ decays, where


D^o → K^{*±}K[±]
Grossman, Ligeti & Soffer [hep-ph/0210433]
The K^{*±}K[∓] is only singly Cabibbo suppressed

Rosner & Suprun show how to measure the relative phase between K*+K⁻ & K*-K+ [hepph/0303117] using the K+K⁻π^o Dalitz plot

Constructive interference gives 113 in overlap region, while destructive gives 4 events, both out of 1500

Can measure δ in KK π & use K_s π K

FLAVOUR IN THE ERA OF THE LHC, Nov. 7-10, 2005