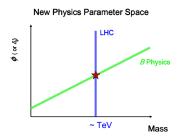
Impacts of quark and lepton flavor signals in LHC era

w/ T. Goto (YITP), Y. Okada (KEK), and M. Tanaka(Osaka U)

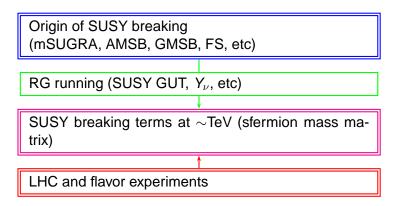

Tetsuo SHINDOU

SISSA/ISAS

09/11/2005 CERN Workshop "Flavor in the era of the LHC"

SUSY in the LHC era

- SUSY is one of the most attractive candidate of NP.
- LHC is the most promising way to discover SUSY.
- SUSY have rich sourse of flavor mixings and CP violations.
- Flavor structure depends on details of new physics.
- In general, correlations among various observables are important to figure out SUSY model.



J.Hewett and D. G. Hitlin (ed.), hep-ph/0503261

・ロト ・ 日 ・ ・ 回 ・ ・

Sfermion mass matrices tells us ...

 $m_{\tilde{f}}^2 = (Y^{\dagger}Y)_{ij}v^2 + m_{ij}^2$ SUSY breaking terms Squark/slepton mass matrices carry information on the SUSY breaking mechanism and interactions at the high energy scale.

Sfermion mass matrices tells us ...

Then different assumption of SUSY flavor model give different structure of sfermion mass matrix

Several assumptions of SUSY breakings

• minimal flavor violation (e.g. mSUGRA, CMSSM, ...) $V_{\tilde{q}} \rightarrow V_{CKM}$

< ロ > < 同 > < 回 > < 回 > .

- SUSY GUT with seesaw mechanism $(m_{\tilde{f}}^2)_{ij} \rightarrow (Y_{\nu}^{\dagger} Y_{\nu})$
- Flavor symmetry (<u>e.g.</u> U(2) model) Same symmetry controls Y_f and m²_f

Content of this talk

- SU(5) SUSY GUT with righthanded neutrinos (RN) as a benchmark model
 - What is a possible deviation from SM ?
- Benchmark point for SU(5) SUSY GUT with RN
 - What flavor signal can be obtained when SUSY is discovered at LHC ?

くロ とく得 とくき とくき とうき

SU(5) SUSY GUT w/ RN

S. Baek, T. Goto, Y. Okada, K. Okumura, PRD63, 051701;PRD64, 095001;

T. Moroi, PLB493, 366; N. Akama, Y. Kiyo, S. Komine, T. Moroi, PRD64,095012;

D. Chang, A. Masiero, H. Murayama, PRD67,075013; J. Hisano, Y. Shimizu, PLB565,183 ...

L_i and D_i are embedded in same multiplet

∜

Large flavor mixing in the neutrino sector can be a source of flavor mixing in the d_R sector

- Correlation btwn LFV and FCNC is important
- New CP phases in the GUT model (GUT phase) $10_i = \{Q_i, (V^{\dagger}U)_i, e^{i\phi_i^L}E_i\}, \quad 5_i = \{D_i, e^{-i\phi_i^L}L_i\}$

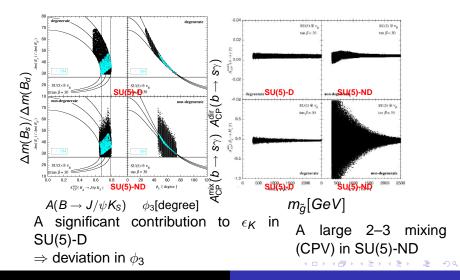
・ロン・(部)・・ヨン・ヨン 三連

The LFVs give strong constraints !

LFV depends on $Y_{\mu}^{\dagger} Y_{\mu}$. $m_{\nu} = v_{\mu}^2 Y_{\nu}^T M_{P}^{-1} Y_{\nu} \rightarrow \text{undetermined 9 d.o.f. } Y_{\nu}$ These d.o.f. affect LFV

e.g. J.R. Ellis, et al. EPJC14,319; S. Lavignac, I. Massina, C.A. Savoy, PLB520,269; J.A. Casas, A. Ibarra, NPB618.171; J. Ellis, J. Hisano, M. Raidal, Y. Shimizu, PRD66, 115013; A. Masiero, S.K. Vempati, O. Vives, NPB649,189; S.T. Petcov, W. Rodejohann, T. S, Y. Takanishi, hep-ph/0510404 ...

Hereafter, we consider two typical examples 🖓


- Degenerate M_R case: $M_R=\mu_R$ 1, $Y_
 u\propto \sqrt{m_
 u^{
 m diag}}U^\dagger$ large 1–2 and 2–3 mixing \Rightarrow severe $\mu \rightarrow e\gamma$ constraint
- Non-degenerate M_R case

 $Y_{\nu}^{\dagger} Y_{\nu} = \begin{pmatrix} * & 0 & 0 \\ 0 & * & * \\ 0 & -\pi & -\pi \end{pmatrix} \quad \begin{array}{l} \mu \to e_{\gamma} \text{ is significantly suppressed} \\ 2-3 \text{ mixing can be large} \end{array}$

J.A. Casas and A. Ibarra, NPB618,171: J. Ellis, J. Hisano, M. Raidal, Y. Shimizu, PRD66, 115013

- We assume mSUGRA type boundary conditions at Planck scale.
- Possible SUSY parameters are scaned.
- We treat ϕ_3 and $|V_{ub}|$ (within ±10%) as a free parameter.
- GUT phase ϕ_L is included
- M_R scale is taken as $\mu_R^3 = \det M_R$
- Constraints
 - SUSY mass and Higgs mass (LEP etc)
 - $2 \times 10^{-4} < {\sf B}(b
 ightarrow {
 m s}\gamma) < 4.5 imes 10^{-4}$
 - For SUSY GUT, $B(\mu \rightarrow e\gamma) < 1.2 \times 10^{-11}$
 - EDMs: $|d_n| < 6.3 \times 10^{-26} ecm$, $|d_e| < 4.0 \times 10^{-27} ecm$
 - $K \bar{K}$: $1.08 \times 10^{-3} < \epsilon_K < 4.42 \times 10^{-3}$
 - $B-\bar{B}$: 0.465 $ps^{-1} < \Delta m_{B_d} < 0.513 ps^{-1}$, $\Delta m_{B_s} > 13.1 ps^{-1}$
 - $A(B \rightarrow J/\psi K_S)$ and related results in B-factory

Numerical Result

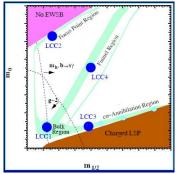
T. Goto, Y. Okada, Y. Shimizu, T.S. and M. Tanaka, PRD66,035009; PRD70, 035012

Pattern of the deviation from SM

	mSUGRA	SU(5)+ <i>v</i> _R (De-	SU(5)+ <i>v</i> _R	U(2) FS
		generate)	(non-deg)	
B _d -UT	closed	closed	closed	++
ϕ_{3}	—	++	-	++
Δm_{B_s}	—	_	++	++
$A_{\rm mix}(B \rightarrow \phi K_{\rm S})$	_	—	++	++
$A_{mix}(B \rightarrow M_{s}\gamma)$	_	+	++	++
$A_{\rm dir}(b \rightarrow s\gamma)$	+	+	+	++

< ロ > < 同 > < 回 > < 回 > .

In SU(5) SUSY GUT,


large SUSY contributions to *B* observables

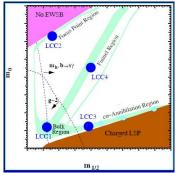
 \Leftrightarrow large contributions to LFV \rightarrow significantly constrained !

Benchmark point in SUSY GUT

In order to figure out impact of flavor physics in era of LHC, we consider a benchmark point.

- If we consider the DM constraint, much of the parameter space is excluded.
- Some benchmark points are proposed for detailed LHC/ILC studies → mass spectrum and signals
- How about flavor signals on such points?

M. Battaglia, talk at Snowmass 2005


We focus on focus point in the SUSY SU(5) GUT with RN

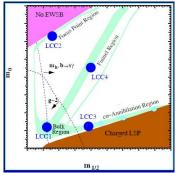
- LSP is $\tilde{\chi}_1^0$ (\tilde{h} like)
- Annihilate to W^+W^- through $\widetilde{\chi}^\pm$ exchange

Benchmark point in SUSY GUT

In order to figure out impact of flavor physics in era of LHC, we consider a benchmark point.

- If we consider the DM constraint, much of the parameter space is excluded.
- Some benchmark points are proposed for detailed LHC/ILC studies → mass spectrum and signals
- How about flavor signals on such points?

M. Battaglia, talk at Snowmass 2005

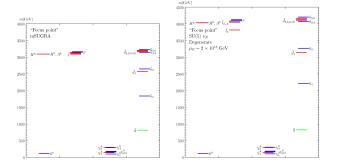

We focus on focus point in the SUSY SU(5) GUT with RN

- LSP is $\tilde{\chi}_1^0$ (\tilde{h} like)
- Annihilate to W^+W^- through $\tilde{\chi}^{\pm}$ exchange

Benchmark point in SUSY GUT

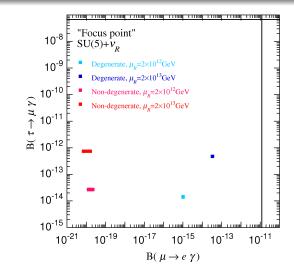
In order to figure out impact of flavor physics in era of LHC, we consider a benchmark point.

- If we consider the DM constraint, much of the parameter space is excluded.
- Some benchmark points are proposed for detailed LHC/ILC studies → mass spectrum and signals
- How about flavor signals on such points?

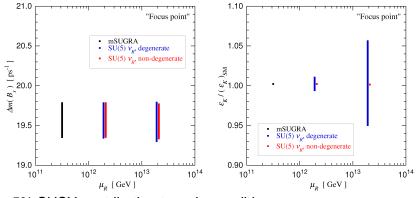

M. Battaglia, talk at Snowmass 2005

We focus on focus point in the SUSY SU(5) GUT with RN

- LSP is $\tilde{\chi}_1^0$ (\tilde{h} like) $\rightarrow \mu < M_1 (\simeq 0.4 m_{1/2}) \ll m_0$
- Annihilate to W^+W^- through $\tilde{\chi}^{\pm}$ exchange


Our definition of focus point in SU(5) SUSY GUT

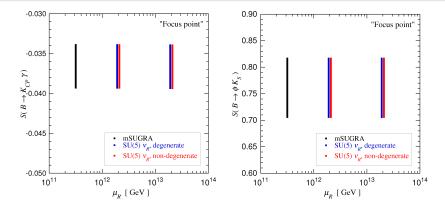
We choose the SUSY parameters s.t. the spectrum of $\tilde{\chi}^0$ and $\tilde{\chi}^{\pm}$ are similar to focus point in mSUGRA


Sfermion masses in SU(5) SUSY GUT are much larger than mSUGRA case \heartsuit

Lepton flavor violation

◆ロ▶★@▶★注▶★注▶ 注:のへで

Unitarity triangle test


< □ > < 同 > < 回 > < 回 > < 回 >

3

~ 5% SUSY contribution to $\epsilon_{\mathcal{K}}$ is possible \downarrow

 \sim 5% deviation in ϕ_3 is possible

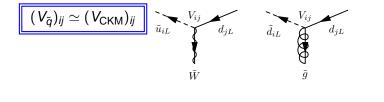
Time dependent CP asymmetry of *B* decay

SUSY contributions on flavor signals (Focus point)

Models	$\mu \rightarrow \mathbf{e}\gamma$	$\tau \to \mu \gamma$	ϕ_{3}	<i>B</i> signal
mSUGRA			small	small
SU(5)-D	10 ⁻¹³	10 ⁻¹²	5%	small
SU(5)-ND	small	10 ⁻¹²	small	small

Summary

- If SUSY at ~TeV is realized in nature, LHC is likely to provide some evidence. Then, determining the SUSY breaking scenario becomes one of the most important works.
- The flavor structure of the SUSY breaking terms should be the largest hint for determining the SUSY breaking scenario.
- There are a variety of ways to look for SUSY effects in flavor processes, LFV, B decays, etc.
- In order to distinguish different SUSY models, we need to see pattern of deviations from the SM predictions in various processes.
- On focus point in SUSY GUT, 5% deviation in φ₃ is possible and LFVs are hopeful to be observed. scenario.



mSUGRA (CMSSM)

S. Bertolini, F. Borzumati, A. Masiero, and G. Ridolfi, NPB353:591

- All squarks and sleptons are degenerate at *M_P*.
- Flavor mixings and mass-splittings are induced by running
- Flavor mixings in d_L sector (because of CKM mixing)
- No mixing in slepton sector

The CKM matrix is the only source of flavor mixing. SUSY CP phases (in *A*- and μ -term) are constrained by EDM exp.

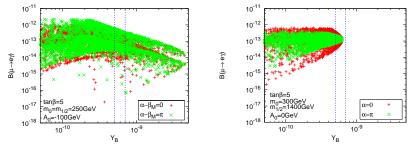
MSSM with U(2) FS

A. Pomarol, D. Tommasini, NPB466,3; R. Barbieri, G. Dvarli, L. Hall, PLB377, 76;

R. Barbieri, L. Hall, NCA110, 1; R. Barbieri, L. Hall, S. Raby, A. Romanino, NPB493, 3;

R. Barbier, L. Hall, A. Romanino, PLB401,47;

A. Masiero, M. Piai, A. Romanino, L. Silverstrini, PRD64, 075005 ...

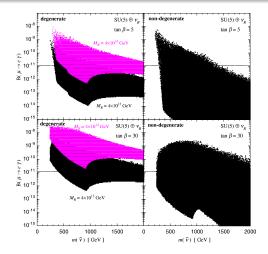

Y_q and $m_{\tilde{q}}^2$ terms are controlled by the same flavor symmetry, U(2)

- 1st and 2nd generation \rightarrow U(2) doublet
- 3rd generation \rightarrow U(2) singlet
- Symmetry is broken as:

$$U(2) \xrightarrow{\epsilon} U(1) \xrightarrow{\epsilon'} No symmetry \quad 1 \gg \epsilon \gg \epsilon'$$

$$(Y)_{ij} \simeq y \begin{pmatrix} 0 & \mathcal{O}(\epsilon') & 0 \\ \mathcal{O}(\epsilon') & \mathcal{O}(\epsilon) & \mathcal{O}(\epsilon) \\ 0 & \mathcal{O}(\epsilon) & 1 \end{pmatrix}, \ m_{\tilde{Q}}^2 = (m_0^2) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 + \mathcal{O}(\epsilon^2) & \mathcal{O}(\epsilon) \\ 0 & \mathcal{O}(\epsilon) & \mathcal{O}(1) \end{pmatrix}$$

hep-ph/0510404

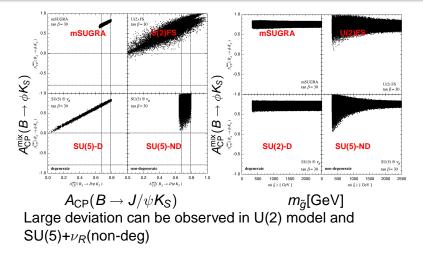

 $m_1 \ll m_2 \ll m_3$

 $m_1 \sim m_2 \gg m_3$

ヘロト 人間 とくほ とくほ とう

æ

Constraint from LFV



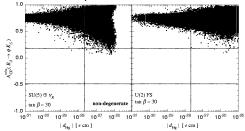
Deg:

$$M_R = 4.0 \times 10^{14} \text{GeV}$$

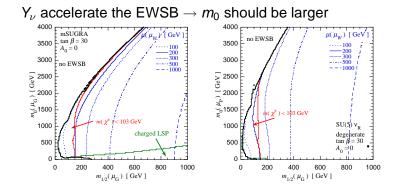
 $M_R = 4.0 \times 10^{13} \text{GeV}$
ND:
 $M_R = 4.0 \times 10^{14} \text{GeV}$

Deg: $Y_{\nu} \rightarrow small$ ND: Y_{ν} can be large

 $A_{mix}(B \rightarrow \phi K_S)$



▲口▶▲圖▶▲圖▶▲圖▶ 通 のQ@


EDM and $B \rightarrow \phi K_S$

A correlation between $A(B \rightarrow \phi K_S)$ and the s-quark EDM is pointed out (J. Hisano, Y. Shimizu, PRD70,093001; PLB581,224).

・ロット (雪) (日) (日) 日

μ in $m_0 - m_{1/2}$ plane

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで