LHCFlavourWS 11/'05

On the Magic of T odd Moments

Ikaros Bigi Notre Dame du Lac

I Basics & a Caveat

 O_T Todd:

$$O_{\mathsf{T}} \longrightarrow -O_{\mathsf{T}}$$

(p,s) $\longrightarrow -(\mathbf{p},\mathbf{s})$

4-body final state P odd
3-body final state P even
2-body final state P odd

Caveat:

- non-zero P odd moment establishes p
 yet a non-zero T odd moment does not establish t
 why?
- ∠ T anti-unitary [X,P] = i
- ▶ FSI can fake T: exp(i $\int dt H_I$) 1 = i $\int dt H_I$ ($\int dt H_I$)²+ ...

yet

- can undertake to evaluate FSI effect
- can disentangle it by comparing CP conjugate moments CP unitary -- FSI cannot fake CP

II Historical Precedent

 $K_L \rightarrow \pi^{+}\pi^{-} \ e^{+}e^{-}$

 Φ angle between $\pi^+\pi^-$ & e^+e^- planes

 $\Box d\Gamma/d\Phi = \Gamma_1 \cos^2 \Phi + \Gamma_2 \sin^2 \Phi + \Gamma_3 \sin \Phi \cos \Phi$

•
$$A = 2\Gamma_3/\pi(\Gamma_1 + \Gamma_2) - a T odd$$
 correlation

A~ 13% KTeV, NA48

- fully consistent with \mathscr{P} through ε_{K}
- for a while (arguably) largest observed *CP*

III $Pol_{\perp}(\mu)$ in $K_{\mu3}$ Decays $K \rightarrow \mu^+ \nu \pi$ | $Pol_{\perp}(\mu) = \langle s_{\mu} \cdot (\mathbf{p}_{\mu} \times \mathbf{p}_{\pi}) / |\mathbf{p}_{\mu} \times \mathbf{p}_{\pi}| \rangle - T \text{ odd moment}$ $K_{I} \rightarrow \mu^{+} \nu \pi^{-}$ Pol, SM(μ) ~ 10⁻³ (~ α/π) -- Coulomb FSI! $K^+ \rightarrow \mu^+ \nu \pi^0$ Pol₁(μ)= (-1.7 ± 2.3 ± 1.1)×10⁻³ vs. Pol₁ SM(μ) < 10⁻⁶ $Pol_{(\mu)} \propto Im \xi, \xi = f_{f_{+}}$ f_{-[+]} helicity violating[conserving] amplitude ⇒ a clean search for Ø via Higgs dyn. K W μ + K H μ

generic guestimate:

direct CP presumably unsuppressed by $\Delta I = 1/2$ rule:

 $5 \times 10^{-6} \times 20 \sim 10^{-4}$

-- unless enhanced couplings to leptons!

 $\begin{array}{l} \mathsf{K}^{+} \rightarrow \mu^{+} \nu \gamma \\ \mathsf{BR}(\mathsf{K}^{+} \rightarrow \mu^{+} \nu \gamma) \approx 5.5 \times 10^{-3} \\ \\ \mathsf{but} \colon \mathsf{Pol}_{\perp}^{\mathsf{FSI}}(\mu) \sim (1\text{-}2) \times 10^{-4} \\ \end{array} \quad \begin{array}{l} \mathsf{Isidori} \ \& \mathsf{Hiller} \ `99 \end{array}$

IV D & B Decays

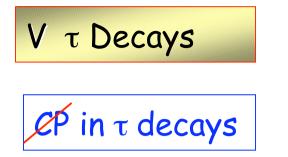

Pilot sudy of $D^0/D^+/D_s \rightarrow KK\pi\pi$ by FOCUS

Table 1 $D^0(\overline{D^0})$ yields split by $C_T(\overline{C_T})$ sign.

Decay mode	Request	Events
$D^0 \to K^- K^+ \pi^- \pi^+$	$C_T>0$	174 ± 21
$D^0 \to K^- K^+ \pi^- \pi^+$	$C_T < 0$	190 ± 24
$\overline{D^0} \to K^- K^+ \pi^- \pi^+$	$\overline{C_T} > 0$	255 ± 24
$\overline{D^0} \to K^- K^+ \pi^- \pi^+$	$\overline{C_T} < 0$	220 ± 25

Table 2 $D^+_{(s)}(D^-_{(s)})$ yields split by $C_T(\overline{C_T})$ sign.

Final State	Request	D^+ Events	D_s^+ Events
$K^0_S K^+ \pi^- \pi^+$	$C_T > 0$	122 ± 16	126 ± 17
$K^0_S K^+ \pi^- \pi^+$	$C_T < 0$	118 ± 16	147 ± 18
$K^0_S K^- \pi^- \pi^+$	$\overline{C_T} > 0$	145 ± 16	120 ± 17
$K^0_S K^- \pi^- \pi^+$	$\overline{C_T} < 0$	137 ± 16	119 ± 16

most promising channels: $\tau \to \nu K \, \pi$

- most sensitive to Higgs dynamics
- CP asymmetries possible also in final state distributions rather than integrated rates
- unique opportunity for e⁺e⁻ → τ⁺τ⁻
 pair produced with spins aligned: 1 τ decays can `tag' the spin of the other
 can probe spin-dependent CP with unpolarized beams!

$\tau \rightarrow vh$, vh_1h_2 , $vh_1h_2h_3$

$\tau^- \rightarrow \nu \ \text{K}^-\pi^0 \ \text{K}^0\pi^-$

- © 3-body final state
- © presumably higher sensitivity to non-minimal Higgs dynamics
- energy distributions, angular correlations ...
- *T odd* moments: $\langle s_{\tau}$. ($p_K \times p_{\pi}$)>
 - \measuredangle can extract info on s_{τ} from τ pair spin alignment C.Nelson
 - \measuredangle can compare τ^+ with τ^-

VI Summary

• we are just at the beginning of exploring unknown & novel territories of \mathcal{G}^{\not} in final state distributions

 those could provide specific info on the chirality of New Physics operators

• $K^+ \rightarrow \mu^+ \nu \pi^0$ -- search window of 3 orders of magnitude in $P_{\perp}(\mu)$

natural place for non-minimal scalar dynamics to surface

 $\square D, B \rightarrow 4 P$

• $\tau \rightarrow v K\pi / K\pi\pi$ -- there is fame within your grasp!