Signals of quark singlets at large colliders and B factories

J. A. Aguilar-Saavedra

Centro de Física Teórica de Partículas (CFTP) Instituto Superior Técnico, Lisbon

Workshop "Flavour in the era of the LHC" CERN, Nov. 9th 2005

過 ト イヨ ト イヨ ト ヨ ヨ の へ ()

2 Signals at LHC

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ ヨヨ のへ⊙

Overview of the model

Addition of one $SU(2)_L$ singlet *T* with charge Q = 2/3extra dimensions, little Higgs models, GUTs

◆□▶ ◆□▶ ◆三▶ ◆三▶ ④□ ● ●

Mass matrix of Q = 2/3 quarks with seesaw structure

 $M^{u} = \frac{v}{\sqrt{2}}Y^{u}$, B^{u} bare mass term or from Higgs singlet

$$\mathcal{M}^{u} = \begin{pmatrix} M^{u} \\ B^{u} \end{pmatrix} = \begin{pmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \\ B_{1} & B_{2} & B_{3} & B_{4} \end{pmatrix}$$

Overview of the model

Addition of one $SU(2)_L$ singlet *T* with charge Q = 2/3extra dimensions, little Higgs models, GUTs

Mass matrix of Q = 2/3 quarks with seesaw structure

 $M^{u} = \frac{v}{\sqrt{2}}Y^{u}$, B^{u} bare mass term or from Higgs singlet

$$\mathcal{M}^{u} = \begin{pmatrix} M^{u} \\ B^{u} \end{pmatrix} = \begin{pmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \\ 0 & 0 & 0 & B \end{pmatrix}$$

$$m_T = B$$
, $V_{Tb} \sim \frac{m_t}{m_T}$

[Aguila, Bowick '83]

◆□▶ ◆□▶ ◆三▶ ◆三▶ ④□ ● ●

Mixing with singlet \iff modifies interactions with W, Z and Hdoes not affect interactions with γ , g

$$\mathcal{L}_{W} = -\frac{g}{\sqrt{2}} \left[\bar{u} \gamma^{\mu} V P_{L} d W_{\mu}^{+} + \bar{d} \gamma^{\mu} V^{\dagger} P_{L} u W_{\mu}^{-} \right]$$
$$\mathcal{L}_{Z} = -\frac{g}{2c_{W}} \bar{u} \gamma^{\mu} \left[P_{L} - \frac{4}{3} s_{W}^{2} \mathbb{1}_{4 \times 4} \right] u Z_{\mu}$$
$$\mathcal{L}_{H} = \frac{g}{2M_{W}} \bar{u} \left[\mathcal{M}^{u} P_{L} + \mathcal{M}^{u} P_{R} \right] u H$$

* E > * E > E

= 990

Mixing with singlet \iff modifies interactions with W, Z and Hdoes not affect interactions with γ , g

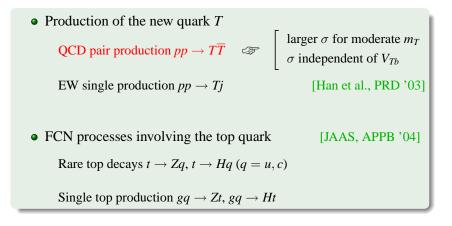
$$\mathcal{L}_{W} = -\frac{g}{\sqrt{2}} \left[\bar{u} \gamma^{\mu} V_{4\times 3} P_{L} d W_{\mu}^{+} + \bar{d} \gamma^{\mu} V_{4\times 3}^{\dagger} P_{L} u W_{\mu}^{-} \right]$$
$$\mathcal{L}_{Z} = -\frac{g}{2c_{W}} \bar{u} \gamma^{\mu} \left[X P_{L} - \frac{4}{3} s_{W}^{2} \mathbb{1}_{4\times 4} \right] u Z_{\mu}$$
$$\mathcal{L}_{H} = \frac{g}{2M_{W}} \bar{u} \left[\mathcal{M}^{u} X P_{L} + X \mathcal{M}^{u} P_{R} \right] u H$$

 $X = VV^{\dagger}$

* E > * E > E

= 990

In particular:


- New quark *T* has a CC coupling V_{Tb} to the *b* quark (V_{Td} , V_{Ts} much smaller)
- *T* has a FCN coupling to the top and Z boson $X_{tT} \simeq |V_{Tb}|^2 (1 - |V_{Tb}|^2)$
- V_{tb} smaller than unity: $|V_{tb}|^2 = 1 - |V_{ub}|^2 - |V_{cb}|^2 - |V_{Tb}|^2 \simeq 1 - |V_{Tb}|^2$
- $Z t_L t_L$ coupling also smaller: $c_L = 1 - \frac{4}{3} s_W^2 \longrightarrow c_L = X_{tt} - \frac{4}{3} s_W^2$, with $X_{tt} \simeq |V_{tb}|^2$

Signals at LHC

• Production of the new quark T QCD pair production $pp \to T\overline{T}$ [Aguila et al., NPB '90] EW single production $pp \rightarrow Tj$ [Han et al., PRD '03] • FCN processes involving the top quark [JAAS, APPB '04] Rare top decays $t \to Zq$, $t \to Hq$ (q = u, c)Single top production $gq \rightarrow Zt, gq \rightarrow Ht$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ④□ ● ●

Signals at LHC

◆□▶ ◆□▶ ◆三▶ ◆三▶ ④□ ● ●

Signals at LHC

• Production of the new quark T

QCD pair production $pp \to T\overline{T}$

EW single production $pp \rightarrow Tj$ $rac{1}{2}$

$$\begin{bmatrix} \sigma \propto |V_{Tb}|^2 \\ \text{larger}^* \sigma \text{ for } m_T \gtrsim 1 \text{ TeV} \end{bmatrix}$$

[Aguila et al., NPB '90]

◆□▶ ◆□▶ ◆三▶ ◆三▶ ④□ ● ●

FCN processes involving the top quark [JAAS, APPB '04]
 Rare top decays t → Zq, t → Hq (q = u, c)
 Single top production gq → Zt, gq → Ht

Decays of T	$(M_H =$	115 GeV)
m_T	500 GeV	1 TeV
$Br(T \to W^+ b)$	0.50	0.50
$\operatorname{Br}(T \to Zt)$	0.16	0.23
$\operatorname{Br}(T \to Ht)$	0.34	0.27

We study $T\overline{T}$ production in the channel $T\overline{T} \rightarrow W^+ bW^- \overline{b}$ with one *W* decaying leptonically and the other one hadronically [JAAS, PLB '05]

We consider $m_T = 500$ GeV, $m_T = 1$ TeV

Event generation done with our own MC generators $(T\overline{T}, t\overline{t}, t\overline{b}j)$ and ALPGEN $(Wb\overline{b}jj, Zb\overline{b}jj)$

Analysis done with PYTHIA + ATLFAST

We require a final state with:

- one isolated charged lepton
- two *b*-tagged jets

with $|\eta| \leq 2.5, p_t \geq 20 \text{ GeV}$

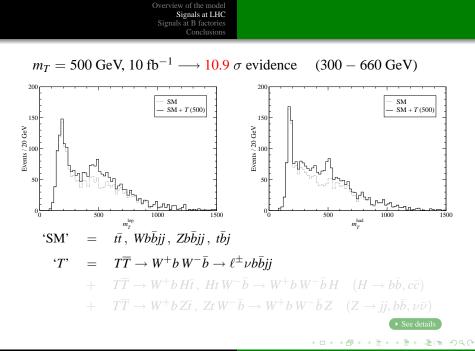
・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

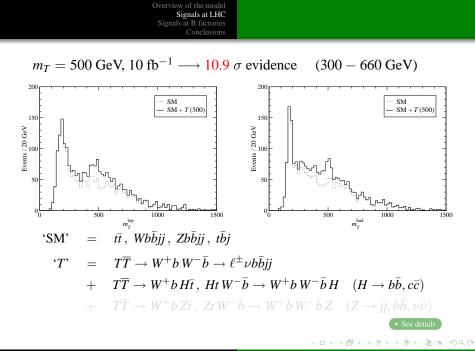
= nan

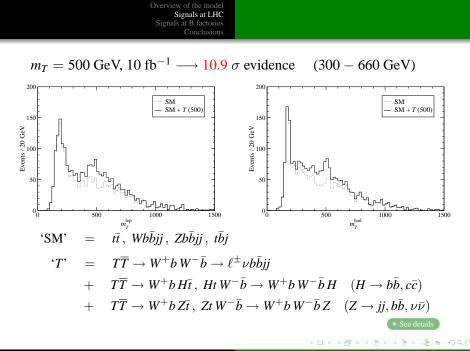
b tagging efficiency of 60% (50%) for low (high) luminosity phase

Signal and background cross sections				
Process		$\sigma\times \mathrm{eff}$	Process	$\sigma\times \mathrm{eff}$
$T\bar{T}$ (500)		37.3 fb	$t\overline{t}$	18.8 pb
	+	46.5 fb (<i>H</i>)	Wbbjj	1.23 pb
	+	19.8 fb (Z)	$Z b \overline{b} j j$	246 fb
$T\bar{T}$ (1000)		0.618 fb	tĒj	710 fb
	+	0.638 fb (<i>H</i>)		
	+	0.481 fb (Z)		

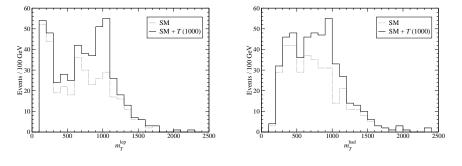
We require high transverse momentum for the charged lepton and jets


$m_T = 500 \text{ GeV}$	1
$p_t^{ m lep} \geq 50~{ m GeV}$	
$p_t^{j,\max} \ge 250 \text{ GeV}$	
$p_t^{b,\max} \ge 250 \text{ GeV}$	
$H_T \ge 1000 \text{ GeV}$	
$50 \text{ GeV} \le p_t \le 600 \text{ GeV}$	


$m_T = 1 \text{ TeV}$
$p_t^{ m lep} \ge 200~{ m GeV}$
$p_t^{j,\max} \ge 400 \text{ GeV}$
$p_t^{b,\max} \ge 300 \text{ GeV}$
$H_T \ge 1800 \text{ GeV}$
$50 \text{ GeV} \le p_t \le 400 \text{ GeV}$

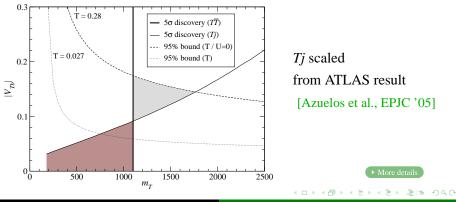

得入 イヨト イヨト 三日 わらや

Reconstruction done looking for two particles of equal mass


$$m(\ell \nu b_1) = m(j_1 j_2 b_2)$$

$$m_T = 1000 \text{ GeV}, 300 \text{ fb}^{-1} \longrightarrow 9.1 \sigma \text{ evidence} \quad (800 - 1200 \text{ GeV})$$

See details


・ロト・(日)・(日)・(日)・(日)・

J. A. Aguilar-Saavedra Signals of quark singlets at large colliders and B factories

LHC reach for Q = 2/3 singlets

For $m_T = 500$ GeV, 5 σ evidence achieved with 2.1 fb⁻¹

Eventually, $m_T \simeq 1.1$ TeV can be reached with 300 fb⁻¹

J. A. Aguilar-Saavedra Signals of quark singlets at large colliders and B factories

Signals at B factories

New effects in low energy physics given by:

- Loss of unitarity of the 3×3 CKM matrix
- Contribution of the new quark to loop observables

[Barger, Berger, Phillips, PRD '95]

for $m_T = m_t$ both contributions cancel "Screening" property: for $m_T > m_t$, new quark can enhance or screen CKM breaking effects [JAAS, Botella, Branco, Nebot, NPB '05]

We do not consider other (model-dependent) contributions from new bosons, etc.

 3×3 unitarity breaking \iff different ranges for $|V_{td}|, |V_{ts}|, |V_{tb}|$

$$|V| = \begin{pmatrix} |V_{ud}| & |V_{us}| & |V_{ub}| & \cdots \\ |V_{cd}| & |V_{cs}| & |V_{cb}| & \cdots \\ |V_{td}| & |V_{ts}| & |V_{tb}| & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

 $m_T = 500 \text{ GeV} \implies |V_{td}|, |V_{ts}| \text{ with their SM values } \xrightarrow{\text{More}}$ important deviations allowed in $|V_{tb}| \stackrel{\text{\tiny CM}}{\textcircled{\baselineskip}} \xrightarrow{\text{More}}$

▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ • • • • • •

 3×3 unitarity breaking $rac{1}{2}$ different ranges for the phases

$$\arg V = \begin{pmatrix} 0 & \chi' & -\gamma & \cdots \\ \pi & 0 & 0 & \cdots \\ -\beta & \pi + \chi & 0 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

$$m_T = 500 \text{ GeV} \implies |\chi'| \lesssim 0.06 \text{ (general)} \cong$$

but $|\chi| \simeq 0.3$ is possible \Im

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < ○ ○

The phase χ

- β , γ appear in standard unitarity triangle while χ , χ' do not
- $0.015 \le \chi \le 0.022$ at 90% CL in the SM
- With Q = 2/3 singlets $\chi \sim \pm 0.3$ is possible while having β , γ very close to the SM prediction
- χ is involved in B_s mixing and $b \rightarrow s\bar{s}s$ decays

◆□▶ ◆□▶ ◆三▶ ◆三▶ ④□ ● ●

Some effects in B physics

Analysis done taking experimental constraints into account:

 R_b, R_c, FB asymmetries, oblique parameters, $\varepsilon, \varepsilon', \delta m_{B_d}, \delta m_{B_s}, \delta m_D$, $a(B \to \psi K_S), K^+ \to \pi^+ \nu \bar{\nu}, K_L \to \mu^+ \mu^-, b \to s\gamma, b \to s\ell^+\ell^-$ and more [JAAS, PRD '03]

Recent measurements also OK:

$$\mathcal{A}_{\mathrm{SL}}, a(b \to s\gamma), a(B \to DK), a(B \to \rho\rho)$$

SM predictionswith an extra quark $\delta m_{B_s} / \delta m_{B_d} \sim 35$ \longrightarrow $a(B \rightarrow \psi \phi) \sim \lambda^2$ \longrightarrow $a(B \rightarrow \phi K_S) = a(B \rightarrow \psi K_S)$ \longrightarrow difference $O(\lambda)$

Some effects in B physics

Analysis done taking experimental constraints into account:

 R_b, R_c, FB asymmetries, oblique parameters, $\varepsilon, \varepsilon', \delta m_{B_d}, \delta m_{B_s}, \delta m_D$, $a(B \to \psi K_S), K^+ \to \pi^+ \nu \bar{\nu}, K_L \to \mu^+ \mu^-, b \to s\gamma, b \to s\ell^+ \ell^-$ and more [JAAS, PRD '03]

Recent measurements also OK:

$$\mathcal{A}_{\mathrm{SL}}, a(b \to s\gamma), a(B \to DK), a(B \to \rho\rho)$$

SM predictionswith an extra quark $\delta m_{B_s} / \delta m_{B_d} \sim 35$ \longrightarrow between 26 and 77 $a(B \rightarrow \psi \phi) \sim \lambda^2$ \longrightarrow between -0.4 and 0.4 $a(B \rightarrow \phi K_S) = a(B \rightarrow \psi K_S)$ \longrightarrow difference $O(\lambda)$

Some effects in B physics

Analysis done taking experimental constraints into account:

 R_b, R_c, FB asymmetries, oblique parameters, $\varepsilon, \varepsilon', \delta m_{B_d}, \delta m_{B_s}, \delta m_D$, $a(B \to \psi K_S), K^+ \to \pi^+ \nu \bar{\nu}, K_L \to \mu^+ \mu^-, b \to s\gamma, b \to s\ell^+ \ell^-$ and more [JAAS, PRD '03]

Recent measurements also OK:

$$\mathcal{A}_{\mathrm{SL}}, a(b \to s\gamma), a(B \to DK), a(B \to \rho\rho)$$

SM predictionswith an extra quark $\delta m_{B_s} / \delta m_{B_d} \sim 35$ \longrightarrow between 26 and 77 $a(B \rightarrow \psi \phi) \sim \lambda^2$ \longrightarrow between -0.4 and 0.4 $a(B \rightarrow \phi K_S) = a(B \rightarrow \psi K_S)$ \longrightarrow difference $O(\lambda)$

Some effects in B physics

Analysis done taking experimental constraints into account:

 R_b, R_c, FB asymmetries, oblique parameters, $\varepsilon, \varepsilon', \delta m_{B_d}, \delta m_{B_s}, \delta m_D$, $a(B \to \psi K_S), K^+ \to \pi^+ \nu \bar{\nu}, K_L \to \mu^+ \mu^-, b \to s\gamma, b \to s\ell^+ \ell^-$ and more [JAAS, PRD '03]

Recent measurements also OK:

$$\mathcal{A}_{\mathrm{SL}}, a(b \to s\gamma), a(B \to DK), a(B \to \rho\rho)$$

SM predictionswith an extra quark $\delta m_{B_s} / \delta m_{B_d} \sim 35$ \longrightarrow between 26 and 77 $a(B \to \psi \phi) \sim \lambda^2$ \longrightarrow between -0.4 and 0.4 $a(B \to \phi K_S) = a(B \to \psi K_S)$ \longrightarrow difference $O(\lambda)$

Other effects in low energy physics

$$\begin{array}{ll} \operatorname{Br}(K_L \to \pi^0 \nu \bar{\nu}) \simeq 2.4 \times 10^{-11} & \longrightarrow & \operatorname{up to } 4.4 \times 10^{-10} \\ \\ \operatorname{Br}(K^+ \to \pi^+ \nu \bar{\nu}) \simeq 6.4 \times 10^{-11} & \longrightarrow & \operatorname{can \ accomodate \ larger \ values} \\ \\ \delta m_D \sim 10^{-5} \ \mathrm{ps}^{-1} & \longrightarrow & \operatorname{up \ to \ exp. \ limit} \end{array}$$

Other effects in low energy physics

$$\begin{array}{ll} \operatorname{Br}(K_L \to \pi^0 \nu \bar{\nu}) \simeq 2.4 \times 10^{-11} & \longrightarrow & \operatorname{up} \text{ to } 4.4 \times 10^{-10} \\ \\ \operatorname{Br}(K^+ \to \pi^+ \nu \bar{\nu}) \simeq 6.4 \times 10^{-11} & \longrightarrow & \operatorname{can} \text{ accomodate larger values} \\ \\ \delta m_D \sim 10^{-5} \ \mathrm{ps}^{-1} & \longrightarrow & \operatorname{up} \text{ to exp. limit} \end{array}$$

Other effects in low energy physics

$$\begin{array}{ll} \operatorname{Br}(K_L \to \pi^0 \nu \bar{\nu}) \simeq 2.4 \times 10^{-11} & \longrightarrow & \operatorname{up} \text{ to } 4.4 \times 10^{-10} \\ \\ \operatorname{Br}(K^+ \to \pi^+ \nu \bar{\nu}) \simeq 6.4 \times 10^{-11} & \longrightarrow & \operatorname{can \ accomodate \ larger \ values} \\ \\ \delta m_D \sim 10^{-5} \ \mathrm{ps}^{-1} & \longrightarrow & \operatorname{up \ to \ exp. \ limit} \end{array}$$

Other effects in low energy physics

$$\operatorname{Br}(K_L \to \pi^0 \nu \bar{\nu}) \simeq 2.4 \times 10^{-11} \longrightarrow \operatorname{up} \operatorname{to} 4.4 \times 10^{-10}$$

$$Br(K^+ \to \pi^+ \nu \bar{\nu}) \simeq 6.4 \times 10^{-11}$$

can accomodate larger values

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ ヨヨ のへ⊙

 $\delta m_D \sim 10^{-5} \text{ ps}^{-1} \longrightarrow \text{up to exp. limit}$

Signals correlated with a large χ

$$\sin \chi = \frac{\operatorname{Im} X_{ct}}{|V_{cs}||V_{ts}|} + O(\lambda^2) \quad \longrightarrow \quad \chi \sim \lambda \text{ requires } X_{ct} \sim \lambda^3$$

 $|X_{ct}|^2 \leq (1 - X_{cc})(1 - X_{tt}) \longrightarrow X_{ct} \sim \lambda^3 \text{ requires } X_{tt} \simeq 0.96$ (More

 $X_{tt} \simeq 1 - |V_{Tb}|^2 \longrightarrow X_{tt} \simeq 0.96 ext{ for } m_T \lesssim 800 ext{ GeV} ullet ext{More}$

得 トイヨト イヨト ヨヨ のくや

Signals correlated with a large χ

$$\sin \chi = \frac{\operatorname{Im} X_{ct}}{|V_{cs}| |V_{ts}|} + O(\lambda^2) \longrightarrow \chi \sim \lambda \text{ requires } X_{ct} \sim \lambda^3$$
$$\longrightarrow \text{ Decays } t \to Zc$$
$$|X_{ct}|^2 \le (1 - X_{cc})(1 - X_{tt}) \longrightarrow X_{ct} \sim \lambda^3 \text{ requires } X_{tt} \simeq 0.96 \quad \text{e More}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ④□ ● ●

Signals correlated with a large χ

$\sin \chi = \frac{\operatorname{Im} X_{ct}}{|V_{cs}| |V_{ts}|} + O(\lambda^2) \longrightarrow \chi \sim \lambda \text{ requires } X_{ct} \sim \lambda^3$ $\longrightarrow \quad \operatorname{Decays} t \to Zc$

$$|X_{ct}|^2 \le (1 - X_{cc})(1 - X_{tt}) \longrightarrow X_{ct} \sim \lambda^3$$
 requires $X_{tt} \simeq 0.96$

 $X_{tt}\simeq 1-|V_{Tb}|^2 \longrightarrow X_{tt}\simeq 0.96 ext{ for } m_T\lesssim 800 ext{ GeV}$. More

▲帰▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のへで

Signals correlated with a large χ

$$\sin \chi = \frac{\operatorname{Im} X_{ct}}{|V_{cs}||V_{ts}|} + O(\lambda^2) \longrightarrow \chi \sim \lambda \text{ requires } X_{ct} \sim \lambda^3$$

$$\longrightarrow \text{ Decays } t \to Zc$$

$$|X_{ct}|^2 \leq (1 - X_{cc})(1 - X_{tt}) \longrightarrow X_{ct} \sim \lambda^3 \text{ requires } X_{tt} \simeq 0.96 \quad \text{More}$$

$$\longrightarrow \text{ Observable in } e^+e^- \to t\bar{t} ? \text{ (ILC)}$$

$$X_{tt} \simeq 1 - |V_{Tb}|^2 \longrightarrow X_{tt} \simeq 0.96 \text{ for } m_T \lesssim 800 \text{ GeV} \quad \text{More}$$

Signals correlated with a large χ

$$\sin \chi = \frac{\operatorname{Im} X_{ct}}{|V_{cs}||V_{ts}|} + O(\lambda^2) \longrightarrow \chi \sim \lambda \text{ requires } X_{ct} \sim \lambda^3$$

$$\longrightarrow \text{ Decays } t \to Zc$$

$$|X_{ct}|^2 \leq (1 - X_{cc})(1 - X_{tt}) \longrightarrow X_{ct} \sim \lambda^3 \text{ requires } X_{tt} \simeq 0.96 \quad \text{More}$$

$$\longrightarrow \text{ Observable in } e^+e^- \to t\bar{t} ? \text{ (ILC)}$$

$$X_{tt} \simeq 1 - |V_{Tb}|^2 \longrightarrow X_{tt} \simeq 0.96 \text{ for } m_T \lesssim 800 \text{ GeV} \quad \text{More}$$

Overview of the model Signals at LHC Signals at B factories Conclusions

Signals correlated with a large χ

$$\sin \chi = \frac{\operatorname{Im} X_{ct}}{|V_{cs}||V_{ts}|} + O(\lambda^{2}) \longrightarrow \chi \sim \lambda \text{ requires } X_{ct} \sim \lambda^{3}$$

$$\longrightarrow \text{ Decays } t \to Zc$$

$$|X_{ct}|^{2} \leq (1 - X_{cc})(1 - X_{tt}) \longrightarrow X_{ct} \sim \lambda^{3} \text{ requires } X_{tt} \simeq 0.96 \quad \text{More}$$

$$\longrightarrow \text{ Observable in } e^{+}e^{-} \to t\overline{t} ? \text{ (ILC)}$$

$$X_{tt} \simeq 1 - |V_{Tb}|^{2} \longrightarrow X_{tt} \simeq 0.96 \text{ for } m_{T} \lesssim 800 \text{ GeV} \quad \text{More}$$

$$\longrightarrow \text{ Observable at LHC}$$

Overview of the model Signals at LHC Signals at B factories Conclusions

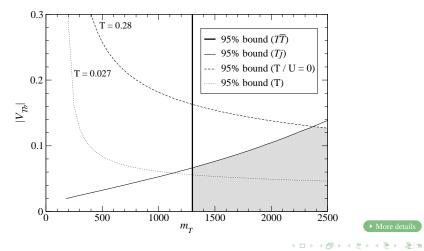
Conclusions

Q = 2/3 singlets with a mass up to ~ 1 TeV can be observed at LHC

If they exist, they may give new effects in low energy physics

- CP asymmetries in *B* decays
- $\delta m_{B_s}, \delta m_D$
- Rare kaon decays

as well as in top physics


- top FCN decays $t \rightarrow qZ$
- $e^+e^- \rightarrow t\bar{t}$ (ILC)

▲ 伊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 三 臣 ● の Q @

Overview of the model Signals at LHC Signals at B factories Conclusions

Conclusions

If Q = 2/3 singlets not observed at LHC \implies limits on m_T , $|V_{Tb}|$

 $T\overline{T}$ signals m_T and V_{Tb} dependence of $T\overline{T}$, T_j production Allowed range for CKM elements Allowed range of various observables

Anomaly cancellation

$$\operatorname{tr}[t^{a}t^{b}Y] = \frac{1}{2}\delta^{ab}\sum_{q}Y_{q} \longrightarrow \Delta = \left(-\frac{2}{3}\right) + \frac{2}{3} = 0$$

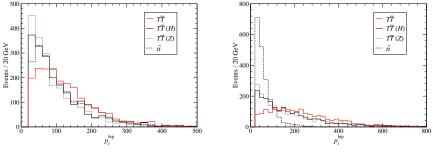
$$\operatorname{tr}[\tau^{a}\tau^{b}Y] = \frac{1}{2}\delta^{ab}\sum_{f,d}Y_{f} \longrightarrow \Delta = 0$$

$$\operatorname{tr}[Y^{3}] = \sum_{f}Y_{f}^{3} \longrightarrow \Delta = \left(-\frac{2}{3}\right)^{3} + \left(\frac{2}{3}\right)^{3} = 0$$

$$\operatorname{tr}[Y] = \sum_{f}Y_{f} \longrightarrow \Delta = \left(-\frac{2}{3}\right) + \frac{2}{3} = 0$$

$$\operatorname{tr}[Y] = \sum_{f}Y_{f} \longrightarrow \Delta = \left(-\frac{2}{3}\right) + \frac{2}{3} = 0$$

・ロト・(日)・(日)・(日)・(日)・


 $T\overline{T}$ signals m_T and V_{Tb} dependence of $T\overline{T}$, Tj production Allowed range for CKM elements Allowed range of various observables

Signals and backgro	ound	s after c	uts ($(m_T = 500 \text{ GeV})$
Process		N _{cut}	N _{peak}	
$Tar{T}$		201.7	125.8	
	+	139.4	45.4	(H)
	+	58.5	20.9	(Z)
$t\overline{t}$		1609	240	
W b ar b j j		287	65	
$Zbar{b}jj$		39	10	
tĪbj		70	11	
				Back More

・ロト・(日)・(日)・(日)・(日)・

 $T\overline{T}$ signals m_T and V_{Tb} dependence of $T\overline{T}$, Tj production Allowed range for CKM elements Allowed range of various observables

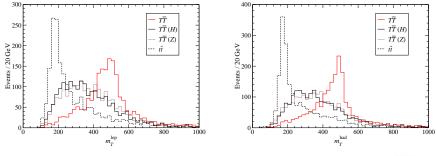
 p_t^{lep} cut substantially reduces the $T\overline{T}$ (*H*) and $T\overline{T}$ (*Z*) signals Cut required to reduce backgrounds

Distributions for 2000 events, without cuts

◆ Back → More

고 노

イロト イ理ト イヨト イヨト


 $T\bar{T}$ signals

 M_T and V_{Tj} , dependence of $T\bar{T}$, Tj production

 Alditional slides

 Allowed range of various observables

For $m_T = 500$ GeV, $T\bar{T}$ (*H*) and $T\bar{T}$ (*Z*) signals have a sizeable contribution around the m_T peak

Distributions for 2000 events, without cuts

▲ Back

-

1= nac

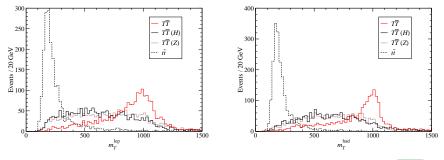
イロト イポト イヨト イヨト

 $T\overline{T}$ signals m_T and V_{Tb} dependence of $T\overline{T}$, Tj production Allowed range for CKM elements Allowed range of various observables

Signals and backgrou	$(m_T = 1 \text{ TeV})$			
Process		N _{cut}	N _{peak}	
$Tar{T}$		58.2	33.5	
	+	39.6	7.8	(H)
	+	21.0	5.1	(Z)
$t\bar{t}$		208	10	
W b ar b j j		132	15	
$Zbar{b}jj$		19	1	
$tar{b}j$		3	0	
				Back More

J. A. Aguilar-Saavedra Signals of quark singlets at large colliders and B factories

・ロト・(日)・(日)・(日)・(日)・


 $T\overline{T}$ signals

 m_T and V_{Tb} dependence of $T\overline{T}$, Tj production

 Allowed range for CKM elements

 Allowed range of various observables

For $m_T = 100$ TeV, $T\bar{T}$ (*H*) and $T\bar{T}$ (*Z*) signals are widely distributed across the m_T^{lep} and m_T^{had} range

Distributions for 2000 events, without cuts

• Back

고 노

イロト イ理ト イヨト イヨト

TT signals m_T and V_{Tb} dependence of $T\overline{T}$, T_j production Allowed range for CKM elements Allowed range of various observables

Indirect constraints on V_{Tb}

 V_{Tb} constrained by the T parameter

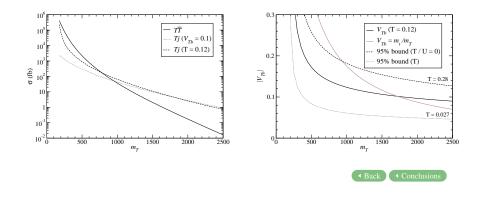
$$T = \frac{N_c}{16\pi s_W^2 c_W^2} \left\{ |V_{Tb}|^2 \left[\theta_+(y_T, y_b) - \theta_+(y_t, y_b) \right] - |X_{tT}|^2 \theta_+(y_T, y_t) \right\}$$
[Lavoura, Silva, PRD '93]
[JAAS, PRD '03]

plus other model-dependent new physics contributions (ignored)

Experimentally

$$T = -0.17 \pm 0.12$$
 (U arbitrary)
 $T = 0.12 \pm 0.10$ (U = 0)

$$rightarrow 95\%$$
 bounds on $|V_{Tb}|$

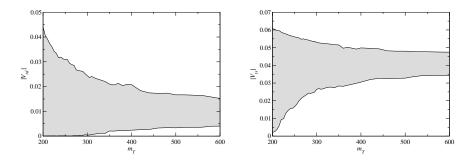

◆□▶ ◆□▶ ◆三▶ ◆三▶ ④□ ● ●

More

 $T\bar{T}$ signals m_T and V_{Tb} dependence of $T\bar{T}$, T_j production Allowed range for CKM elements Allowed range of various observables

m_T dependence of $T\overline{T}$, Tj production

 $V_{Tb} \sim m_t/m_T$ expected from mass matrix diagonalisation


イロト 不得 トイヨト 不足 ト ほ

= 900

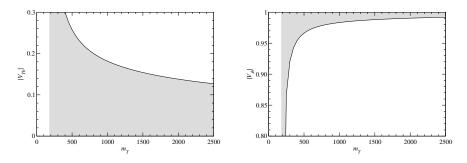
TT signals m_T and V_{Tb} dependence of $T\overline{T}$, T_j production Allowed range for CKM elements Allowed range of various observables

Allowed range for V_{td} , V_{ts}

Experimental data from K, B physics \rightarrow constraints on V_{td} , V_{ts}

Stronger constraints for larger m_T

イロト イ理ト イヨト イヨ

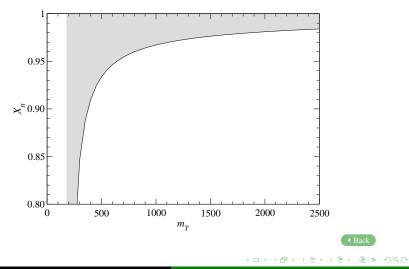

= 990

3

TT signals m_T and V_{Tb} dependence of $T\overline{T}$, T_j production Allowed range for CKM elements Allowed range of various observables

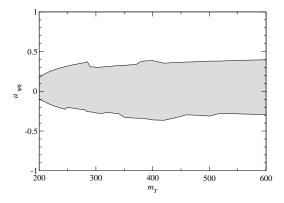
Allowed range for V_{Tb} , V_{tb}

T parameter \rightarrow constraints on V_{Tb} , V_{tb}


Stronger constraints for larger m_T

- (三) (三)

= 990


 $T\bar{T}$ signals m_T and V_{Tb} dependence of $T\bar{T}$, T_j production Allowed range for CKM elements Allowed range of various observables

Allowed range for X_{tt}

 $T\bar{T}$ signals m_T and V_{Tb} dependence of $T\bar{T}$, T_j production Allowed range for CKM elements Allowed range of various observables

Allowed range for $a_{\psi\phi}$

Measured at LHCb with a precision of ± 0.03

伺下 (日下)(日

1= 9QQ

TT signals m_T and V_{Tb} dependence of $T\overline{T}$, Tj production Allowed range for CKM elements Allowed range of various observables

New physics in $a_{\phi K_S}$, $a_{\psi \phi}$

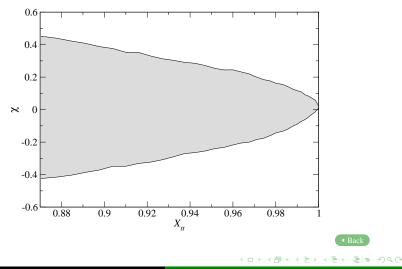
Q = 2/3 singlets:

•
$$a(B \to \phi K_S) = a(B \to \psi K_S)$$
 violated $O(\lambda)$:
 $0.57 \le a(B \to \phi K_S) \le 0.93$

•
$$a(B \rightarrow \psi \phi) \lesssim 0.4$$

[JAAS, Botella, Branco, Nebot, NPB '05]

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ ヨヨ のへ⊙


Q = -1/3 singlets:

• $a(B \to \phi K_S) = a(B \to \psi K_S)$ largely violated	[Hiller, PRD '02]
• $0 \lesssim a(B \to \psi \phi) \lesssim 0.11$	[JAAS, PRD '03]

Other SM extensions: possibly larger effects ...

 $T\bar{T}$ signals m_T and V_{Tb} dependence of $T\bar{T}$, T_j production Allowed range for CKM elements Allowed range of various observables

Dependence of χ on X_{tt}

