Exploring New Physics with B Physics

Workshop on Flavour in the Era of the LHC CERN - November 7, 2005
Yossi Nir (Weizmann Institute of Science)

Thanks to:

- Guy Raz
- Stephane Monteil et al. (CKMfitter)
- Luca Silvestrini (UTfit)

Plan of Talk

Plan of Talk

1. Recent Era: Excluding alternatives to the KM mechanism
(a) Is the KM mechanism at work?
(b) Is δ_{KM} the only source of CPV in meson decays?
(c) Is CPV in $K \rightarrow \pi \pi$ small because of flavor suppression?
(d) Is there direct CPV?
(e) Is there New Physics in $B^{0}-\bar{B}^{0}$ mixing?
(f) Is there New Physics in $b \rightarrow s$ transitions?
2. Future: Looking for corrections to the KM mechanism $S_{\pi^{0} K_{S}}: S M$ and NP
(a) Factorization related methods
(b) $\mathrm{SU}(3)$ based methods
(c) Supersymmetry as an example

Is the KM mechanism at work?

- Assume: New Physics in tree decays - negligible
- Define $r_{d}^{2} \exp \left(2 i \theta_{d}\right)=\left\langle B^{0}\right| \mathcal{H}^{\text {full }}\left|\bar{B}^{0}\right\rangle /\left\langle B^{0}\right| \mathcal{H}^{\mathrm{SM}}\left|\bar{B}^{0}\right\rangle$
- Use $\left|V_{u b} / V_{c b}\right|, \mathcal{A}_{D K}, S_{\psi K}, S_{\rho \rho}, \Delta m_{B_{d}}, \mathcal{A}_{\mathrm{SL}}$
- Fit to $\eta, \rho, r_{d}, \theta_{d}$
- Find whether $\eta=0$ is allowed
$S_{\psi K_{S}}, S_{\rho \rho}, \mathcal{A}_{D K} \cdots$

The KM mechanism is at work!

$$
\delta_{\mathrm{KM}} \neq 0
$$

Is δ_{KM} the only source of CPV in meson decays?

Tree level + CPC observables

$$
\Delta m_{B}, \quad \Delta m_{B_{s}}
$$

Tree level + CPV observables

$$
\varepsilon, \quad S_{\psi K}, \quad \alpha, \gamma
$$

Very likely, δ_{KM} is dominant!

$$
S_{\psi K}=+0.69 \pm 0.03 \Leftrightarrow \sin 2 \beta(\mathrm{CKM} \mathrm{fit})=+0.74_{-0.03}^{+0.07}
$$

The KM mechanism successfully passed its first precision test

Very likely, δ_{KM} is dominant!

$$
S_{\psi K}=+0.69 \pm 0.03 \Leftrightarrow \sin 2 \beta(\mathrm{CKM} \mathrm{fit})=+0.74_{-0.03}^{+0.07}
$$

The KM mechanism successfully passed its first precision test

$$
\alpha(\pi \pi, \pi \rho, \rho \rho)=\left[101_{-9}^{+16}\right]^{o} \Leftrightarrow \alpha(\mathrm{CKM} \text { fit })=96 \pm 16^{o}
$$

The KM mechanism successfully passed its second precision test

Very likely, δ_{KM} is dominant!

$$
S_{\psi K}=+0.69 \pm 0.03 \Leftrightarrow \sin 2 \beta(\mathrm{CKM} \mathrm{fit})=+0.74_{-0.03}^{+0.07}
$$

The KM mechanism successfully passed its first precision test

$$
\alpha(\pi \pi, \pi \rho, \rho \rho)=\left[101_{-9}^{+16}\right]^{o} \Leftrightarrow \alpha(\mathrm{CKM} \text { fit })=96 \pm 16^{o}
$$

The KM mechanism successfully passed its second precision test

$$
\gamma(D K)=\left[63_{-13}^{+15}\right]^{o} \Leftrightarrow \gamma(\mathrm{CKM} \mathrm{fit})=\left[57_{-14}^{+7}\right]^{o}
$$

The KM mechanism successfully passed its third precision test

Is CPV in $K \rightarrow \pi \pi$ small because of flavor?

SM:

- $\epsilon \sim 10^{-3}, \epsilon^{\prime} \sim 10^{-5}$ because of flavor suppression
- Some CP violating phases are order one

Approximate CP:

- All CPV phases are small
- All CP asymmetries are small

Is CPV in $K \rightarrow \pi \pi$ small because of flavor?

SM:

- $\epsilon \sim 10^{-3}, \epsilon^{\prime} \sim 10^{-5}$ because of flavor suppression
- Some CP violating phases are order one

Approximate CP:

- All CPV phases are small
- All CP asymmetries are small

B Physics:

- $S_{\psi K} \sim 0.7$
\Longrightarrow Some CP violating phases are indeed $\mathcal{O}(1)$

$$
\mathcal{A}_{K \mp \pi \pm}, \mathcal{A}_{\rho \pi}^{-+}
$$

Is CP violated in $\Delta B=1$ processes?

SM:

- Indirect $\left(M_{12}\right)$ and direct $\left(A_{f}\right)$ CP violations are both large

Superweak:

- There is no direct $\left(A_{f}\right) \mathrm{CP}$ violation

K Physics:

- $\epsilon^{\prime} / \epsilon=(1.72 \pm 0.18) \times 10^{-3}$
$\Longrightarrow \mathrm{CP}$ is violated in $\Delta S=1$ processes $(s \rightarrow u \bar{u} d)$

$$
\mathcal{A}_{K \mp \pi \pm}, \mathcal{A}_{\rho \pi}^{-+}
$$

Is CP violated in $\Delta B=1$ processes?

SM:

- Indirect $\left(M_{12}\right)$ and direct $\left(A_{f}\right)$ CP violations are both large

Superweak:

- There is no direct $\left(A_{f}\right) \mathrm{CP}$ violation

K Physics:

- $\epsilon^{\prime} / \epsilon=(1.72 \pm 0.18) \times 10^{-3}$
$\Longrightarrow \mathrm{CP}$ is violated in $\Delta S=1$ processes $(s \rightarrow u \bar{u} d)$

B Physics:

- $\mathcal{A}_{K \mp \pi^{ \pm}}=-0.115 \pm 0.018, \mathcal{A}_{\rho \pi}^{-+}=-0.48 \pm 0.14$
$\Longrightarrow \mathrm{CP}$ is violated in $\Delta B=1$ processes $(b \rightarrow u \bar{u} s, b \rightarrow u \bar{u} d)$
$S_{\psi K_{S}}, \Delta m_{B}, \mathcal{A}_{\mathrm{SL}}$

Is there NP in $B^{0}-\bar{B}^{0}$ mixing?

- Assume: New Physics in tree decays - negligible
- Define $r_{d}^{2} \exp \left(2 i \theta_{d}\right) \equiv 1+h e^{i \sigma} \equiv\left\langle B^{0}\right| \mathcal{H}^{\text {full }}\left|\bar{B}^{0}\right\rangle /\left\langle B^{0}\right| \mathcal{H}^{\mathrm{SM}}\left|\bar{B}^{0}\right\rangle$
- Use $\left|V_{u b} / V_{c b}\right|, \mathcal{A}_{D K}, S_{\psi K}, S_{\rho \rho}, \Delta m_{B_{d}}, \mathcal{A}_{\mathrm{SL}}$
- Fit to $\eta, \rho, r_{d}, \theta_{d}($ or $h, \sigma)$
- Find whether $h \neq 0\left(r_{d} \neq 1\right)$ is allowed

Very likely, the KM mechanism dominates

CKMFitter
Agashe et al., hep-ph/0509117
For arbitrary phase, $h=\left|A_{\mathrm{NP}} / A_{\mathrm{SM}}\right| \sim 0.2 \pm 0.2$

Is there NP in $b \rightarrow s$ transitions?

- Rare $b \rightarrow s$ processes consistent with the SM predictions
\Longrightarrow New Physics contributions to certain operators are strongly constrained (Z-penguin, magnetic)
\Longrightarrow New physics contributions to other operators are still very weakly constrained (chromomagnetic, dim-6)

Is there NP in $b \rightarrow s$ transitions?

$$
\mathrm{SM}: \Delta S \equiv-\eta_{\mathrm{CP}} S-S_{\psi K} \approx 0, \quad C \approx 0
$$

f_{CP}	ΔS	C
ϕK_{S}	-0.22 ± 0.19	-0.09 ± 0.15
$\eta^{\prime} K_{S}$	$-0.19 \pm 0.09^{\dagger}$	-0.07 ± 0.07
$f_{0} K_{S}$	$+0.06 \pm 0.24$	$+0.06 \pm 0.21$
$\pi^{0} K_{S}$	-0.38 ± 0.26	-0.02 ± 0.13
ωK_{S}	-0.06 ± 0.30	-0.44 ± 0.24
$K_{S} K_{S} K_{S}$	-0.09 ± 0.23	-0.31 ± 0.17
$K^{+} K^{-} K_{S}^{\ddagger}$	-0.16 ± 0.17	$+0.09 \pm 0.10$

\dagger Belle and Babar not quite consistent $(\Longrightarrow-0.19 \pm 0.13) ~ \ddagger$ Not a CP eigenstate
\Longrightarrow How good is \approx ?

Basics

- Formalism:
- Effective \mathcal{H} for $b \rightarrow s q \bar{q}$ decays:

$$
\begin{aligned}
& \mathcal{H}=\frac{G_{F}}{\sqrt{2}} \sum_{p=u, c} V_{p s}^{*} V_{p b}\left(\sum_{i=1}^{2} C_{i} O_{i}^{p}\right. \\
& \left.+\sum_{i=3}^{10} C_{i} O_{i}+C_{7 \gamma} O_{7 \gamma}+C_{8 g} O_{8 g}\right)
\end{aligned}
$$

- Decay amplitudes:

$$
A_{f}=\langle f| \mathcal{H}\left|B^{0}\right\rangle, \bar{A}_{f}=\langle f| \mathcal{H}\left|\bar{B}^{0}\right\rangle, \quad \lambda_{f}=e^{-i \phi_{B}}\left(\bar{A}_{f} / A_{f}\right)
$$

- CP asymmetries:

$$
S_{f}=2 \mathcal{I} m\left(\lambda_{f}\right) /\left(1+\left|\lambda_{f}\right|^{2}\right), C_{f}=\left(1-\left|\lambda_{f}\right|^{2}\right) /\left(1+\left|\lambda_{f}\right|^{2}\right)
$$

- SM:
$-A_{f}^{\mathrm{SM}}=A_{f}^{c}+A_{f}^{u}$ with $A_{f}^{c} \propto V_{c b}^{*} V_{c s}$ and $A_{f}^{u} \propto V_{u b}^{*} V_{u s}$
$-A_{f}^{\mathrm{SM}}=A_{f}^{c}\left(1+a_{f}^{u} e^{i \gamma}\right)$

The Problem

- Simple NP:
$-C_{i}\left(m_{W}\right)=C_{i}^{\mathrm{SM}}\left(m_{W}\right)+x_{i} \varepsilon e^{i \theta}, x_{i}$ known
$-A_{f}^{\mathrm{SM}}=A_{f}^{c}\left[1+a_{f}^{u} e^{i \gamma}+b_{f}^{c} \varepsilon e^{i \theta}\right]$
- CP asymmetries:
$-\Delta S_{f}=+2 \cos 2 \beta_{\mathrm{eff}}\left[\mathcal{R} e\left(b_{f}^{c}\right) \varepsilon \sin \theta+\mathcal{R} e\left(a_{f}^{u}\right) \sin \gamma\right]$
$-C_{f}=-2 \mathcal{I} m\left(b_{f}^{c}\right) \varepsilon \sin \theta-2 \operatorname{IIm}\left(a_{f}^{u}\right) \sin \gamma$
- Problem:
- To be concvinced that $\varepsilon \neq 0$, we need to know a_{f}^{u}
$-a_{f}^{u}=\left|\left(V_{u b} V_{u s}\right) /\left(V_{c b} V_{c s}\right)\right| \times$ hadronic parameters

Factorization-related methods

Example: $B \rightarrow K^{0} \pi^{0}$:

$$
\begin{aligned}
A_{K^{0} \pi^{0}}^{c} \approx & i V_{c b}^{*} V_{c s} \frac{G_{F}}{2} f_{K} F^{B \rightarrow \pi}\left(m_{K}^{2}\right)\left(m_{B}^{2}-m_{\pi}^{2}\right)\left(a_{4}+r_{\chi} a_{6}\right) \\
A_{K^{0} \pi^{0}}^{u} \approx & i V_{u b}^{*} V_{u s} \frac{G_{F}}{2}\left[f_{K} F^{B \rightarrow \pi}\left(m_{K}^{2}\right)\left(m_{B}^{2}-m_{\pi}^{2}\right)\left(a_{4}+r_{\chi} a_{6}\right)\right. \\
& \left.-f_{\pi} F^{B \rightarrow K}\left(m_{\pi}^{2}\right)\left(m_{B}^{2}-m_{K}^{2}\right) a_{2}\right]
\end{aligned}
$$

where $r_{\chi}=2 m_{K}^{2} /\left[m_{b}\left(m_{s}+m_{d}\right)\right], a_{i} \equiv C_{i}+C_{i \pm 1} / N_{c}$

$$
a_{K \pi}^{u} \approx \lambda^{2} R_{u}\left(1-\frac{f_{\pi}}{f_{K}} \frac{F^{B \rightarrow K}}{F^{B \rightarrow \pi}} \frac{a_{2}}{a_{4}+r_{\chi} a_{6}}\right) \approx 2.75 \lambda^{2} R_{u} \approx 0.052
$$

$\Longrightarrow \Delta S_{\pi K_{S}} \approx 0.06, \quad C_{\pi K_{S}} \approx 0$

$\Delta S_{\pi^{0} K_{S}}$ in Factorization-related methods

$\Delta S_{\pi^{0} K_{S}}$	Method	hep-ph/	Authors
$+0.06 \pm 0.04$	NF	0503151	Buchalla, Hiller, Nir, Raz
$+0.04 \pm 0.03$	$\mathrm{NF}+$ model	0502235	Cheng, Chua, Soni
$+0.07 \pm 0.04$	QCDF	0505075	Beneke
$+0.06 \pm 0.03$	PQCD	0508041	Li, Mishima, Sanda
$+0.08 \pm 0.16$	$\mathrm{SCET}+\mathrm{SU}(3)$	0510241	Bauer, Rothstein, Stewart

SU(3)-based methods

- For $b \rightarrow s$, define: $d_{f}^{q}=A_{f}^{q} /\left(V_{q b}^{*} V_{q s}\right)$

$$
A_{f}=V_{c b}^{*} V_{c s} d_{f}^{c}+V_{u b} V_{u s}^{*} d_{f}^{u}
$$

- For $b \rightarrow d$, define: $h_{f^{\prime}}^{q}=A_{f^{\prime}}^{q} /\left(V_{q b}^{*} V_{q d}\right)$

$$
A_{f^{\prime}}=V_{c b}^{*} V_{c d} h_{f^{\prime}}^{c}+V_{u b} V_{u d}^{*} h_{f^{\prime}}^{u}
$$

The approximate $\mathrm{SU}(3)$ symmetry of the strong interactions
$\Longrightarrow d_{f}^{q}=\Sigma_{f^{\prime}} X_{f^{\prime}} h_{f^{\prime}}^{q}$
where $X_{f^{\prime}}$ are known (CG) coefficients

$$
\left|a_{f}^{u}\right|=\frac{\left|V_{u b} V_{u s} d_{f}^{u}\right|}{\left|V_{c b} V_{c s} d_{f}^{c}\right|} \leq\left|\frac{V_{u s}}{V_{u d}}\right| \frac{\Sigma_{f^{\prime}}\left|X_{f^{\prime}}\right| \sqrt{\mathcal{B}\left(B \rightarrow f^{\prime}\right)}}{\sqrt{\mathcal{B}(B \rightarrow f)}}
$$

SU(3)-based methods

$\ominus \mathrm{SU}(3)$ breaking effects of $\mathcal{O}(0.3)$
\Longrightarrow The bounds are only approximate
\ominus Adding (conservatively) the amplitudes coherently

+ Dependence on measured \mathcal{B} 's
\Longrightarrow Bounds often much weaker than actual estimates
\oplus Hadronic model independence
\Longrightarrow Complimentary to the factorization-related methods

SU(3)-based methods

Example: $B \rightarrow K^{0} \pi^{0}$:

$$
\begin{gathered}
d_{B_{d}^{0} \rightarrow K^{0} \pi^{0}}^{q}=\frac{1}{\sqrt{2}} h_{B_{d}^{0} \rightarrow K^{+}}^{q}-h_{B_{d}^{0} \rightarrow \pi^{0} \pi^{0}}^{q} \\
\left|a_{K^{0} \pi^{0}}^{u}\right| \leq\left|\frac{V_{u s}}{V_{u d}}\right| \frac{\frac{1}{\sqrt{2}} \sqrt{\mathcal{B}\left(B \rightarrow K^{+} K^{-}\right)}+\sqrt{\mathcal{B}\left(B \rightarrow \pi^{0} \pi^{0}\right)}}{\sqrt{\mathcal{B}\left(B \rightarrow K^{0} \pi^{0}\right)}} \\
\downarrow \\
\Longrightarrow\left[\Delta S_{\pi K_{S}} / \cos 2 \beta\right]^{2}+C_{\pi K_{S}}^{2} \leq[0.30 \sin \gamma]^{2}
\end{gathered}
$$

hep-ph/0310020 (Gronau, Grossman, Rosner), hep-ph/0509125 (Raz)

Estimating $\Delta S_{f} \equiv-\eta_{f} S_{f}-S_{\psi K_{s}}$

f_{CP}	EXP	NF^{*}	$\mathrm{QCDF}^{* *}$	$\mathrm{SU}(3)^{* * *}$
ϕK_{S}	-0.22 ± 0.19	$+0.02 \pm 0.01$	$+0.02 \pm 0.01$	$\left(K^{*} K\right)^{\dagger}$
$\eta^{\prime} K_{S}$	-0.19 ± 0.09	$+0.01 \pm 0.02$	$+0.01 \pm 0.01$	0.31
$f_{0} K_{S}$	$+0.06 \pm 0.24$			
$\pi^{0} K_{S}$	-0.38 ± 0.26	$+0.06 \pm 0.04$	$+0.07 \pm 0.04$	0.18
ωK_{S}	-0.06 ± 0.30	$+0.19_{-0.14}^{+0.06}$	0.13 ± 0.08	$\left(K^{*} K\right)^{\dagger}$
$K_{S} K_{S} K_{S}$	-0.08 ± 0.23			$1(0.37)$
$K^{+} K^{-} K_{S}^{\ddagger}$	-0.16 ± 0.17			0.94

* Buchalla, Hiller, Nir, Raz, hep-ph/0503151
** Beneke, hep-ph/0505075
* * * Grossman, Ligeti, Quinn, Nir, hep-ph/0303171; Raz et al., hep-ph/0505195,0508046,0509125
\dagger Available once $\mathcal{B}\left(K^{*} K\right)$ is measured

Supersymmetry: constraints and predictions

$\left(\delta_{23}^{d}\right)_{L L}$

$S_{\pi K}$

$\left(\delta_{23}^{d}\right)_{R R}$

$S_{\phi K}$

$\left(\delta_{23}^{d}\right)_{L R}$

$S_{\eta^{\prime} K}$
$S_{\omega K}$

Silvestrini, hep-ph/0510077

Supersymmetry: constraints and predictions

$\left(\delta_{23}^{d}\right)_{M N}$	Upper Bound *	$\left\|\Delta S_{\phi K_{S}}\right\| \sim 0.1^{* *}$	Alignment $^{* * *}$
$\left(\delta_{23}^{d}\right)_{L L}$	$\lambda^{2}(\mathcal{R} e)-\lambda(\mathcal{I} m)$	λ	λ^{2}
$\left(\delta_{23}^{d}\right)_{R R}$	1	λ	$\lambda^{4}-\lambda^{2}$
$\left(\delta_{23}^{d}\right)_{L R}$	$\lambda^{4}(\mathcal{R} e)-\lambda^{3}(\mathcal{I} m)$	λ^{4}	$\lambda^{2}\left(m_{b} / \tilde{m}\right)$
$\left(\delta_{23}^{d}\right)_{R L}$	λ^{3}	λ^{4}	$\lambda^{4}\left(m_{b} / \tilde{m}\right)$

* Ciuchini et al., hep-ph/0407073
** Silvestrini, hep-ph/0510077
* * * Nir, Raz, hep-ph/0206064

Conclusions

Unitarity Triangles 2005

$$
b \rightarrow d
$$

$\Delta m_{B_{d}}, S_{\psi K}, S_{\rho \rho}$

$b \rightarrow s$
$\Delta m_{B_{s}}, S_{b \rightarrow s \bar{s} s}$

There is still a lot to be learned from future measurements

Conclusions

- The KM phase is different from zero (SM violates CP)
- The KM mechanism is, very likely, the dominant source of the CP violation observed in meson decays
- The size and the phase of NP contributions to $B^{0}-\bar{B}^{0}$ mixing are severely constrained
- Complete alternatives to the KM mechanism are excluded (Superweak, Approximate CP)
- Corrections to KM are possible, particularly for $b \rightarrow s$; No evidence for such corrections at present
- There is still a lot to be learned from flavor/CP physics

Is there NP in $b \rightarrow s$ transitions?

Kirkby and Nir, PDG
No evidence at present

Experimental status of CP asymmetries

f_{CP}	$-\eta_{\mathrm{CP}} S$	C
$\psi \pi^{0}$	$+0.69 \pm 0.25$	-0.11 ± 0.20
$D^{+} D^{-}$	$+0.29 \pm 0.63$	$+0.11 \pm 0.35$
$D^{*+} D^{*-}$	$+0.75 \pm 0.23$	-0.04 ± 0.14
$\pi^{+} \pi^{-}$	$+0.50 \pm 0.12(0.18)$	$-0.37 \pm 0.10(0.23)$
$\pi^{0} \pi^{0}$		-0.28 ± 0.39
$\rho^{+} \rho^{-}$	$+0.22 \pm 0.22$	-0.02 ± 0.17

The NP CP /Flavor Problem

- $m_{H}^{2} \sim\left(m_{H}^{2}\right)_{\text {tree }}+\frac{1}{16 \pi^{2}} \Lambda_{\mathrm{NP}}^{2}$

To avoid fine-tuning of the Higgs mass,

$$
\Lambda_{\mathrm{NP}} \lesssim 4 \pi m_{W} \sim 1 T e V
$$

- $\mathcal{L}_{\mathrm{NP}} \sim \frac{1}{\Lambda_{\mathrm{NP}}^{2}} s \bar{d} s \bar{d}$

To avoid too large contributions to ε_{K} and to $\Delta m_{K, D, B}$, $\Lambda_{\mathrm{NP}} \gtrsim 10^{3-4} \mathrm{TeV}$.

> New Physics at the TeV scale must have a very non-generic flavor and CP structure

SU(3) Relations

$$
\left.\begin{array}{l}
A_{f}=V_{c b}^{*} V_{c s} a_{f}^{c}+V_{u b}^{*} V_{u s} a_{f}^{u}, \quad \xi_{f} \equiv\left|V_{u b} V_{u s} / V_{c b} V_{c s}\right|\left(a_{f}^{c} / a_{f}^{u}\right) \\
--\eta_{f} S_{f}-S_{\psi K}=2 \cos 2 \phi_{1} \sin \phi_{3} \operatorname{Re}\left(\xi_{f}\right) \\
\hline \hline C_{f}=-2 \sin \phi_{3} \operatorname{Im}\left(\xi_{f}\right)
\end{array} \quad \begin{array}{c}
\text { Grossman, Ligeti, Nir, Quinn (03) } \\
\text { Engelhard, Nir, Raz (05) }
\end{array}\right)
$$

- Example: $\left|\xi_{\eta^{\prime} K_{S}}\right| \leq \sqrt{\frac{3 \mathcal{B}\left(\eta^{\prime} \eta\right)}{2 \mathcal{B}\left(\eta^{\prime} K_{S}\right)}}+\sqrt{\frac{\mathcal{B}\left(\eta^{\prime} \pi^{0}\right)}{2 \mathcal{B}\left(\eta^{\prime} K_{S}\right)}}$

mode	$\eta^{\prime} K_{S}$	$\pi^{0} K_{S}$	$K^{-} \pi^{+}$	$\eta^{\prime} K^{+}$	ϕK^{+}	$K_{S} K_{S} K_{S}$
$\|\xi\|<$	0.25	0.18	0.23	0.07	0.22	0.31^{\dagger}

\dagger Extra (mild) dynamical assumptions

