Exploring New Physics with B Physics

Workshop on Flavour in the Era of the LHC CERN – November 7, 2005

Yossi Nir (Weizmann Institute of Science)

Thanks to:

- Guy Raz
- Stephane Monteil et al. (CKMfitter)
- Luca Silvestrini (UTfit)

<u>Plan of Talk</u>

- 1. Recent Era: Excluding alternatives to the KM mechanism
 - (a) Is the KM mechanism at work?
 - (b) Is $\delta_{\rm KM}$ the only source of CPV in meson decays?
 - (c) Is CPV in $K \to \pi\pi$ small because of flavor suppression?
 - (d) Is there direct CPV?
 - (e) Is there New Physics in $B^0 \overline{B}^0$ mixing?
 - (f) Is there New Physics in $b \to s$ transitions?
- 2. Future: Looking for corrections to the KM mechanism $S_{\pi^0 K_S}$: SM and NP
 - (a) Factorization related methods
 - (b) SU(3) based methods
 - (c) Supersymmetry as an example

Is the KM mechanism at work?

- Assume: New Physics in tree decays negligible
- Define $r_d^2 \exp(2i\theta_d) = \langle B^0 | \mathcal{H}^{\text{full}} | \overline{B}{}^0 \rangle / \langle B^0 | \mathcal{H}^{\text{SM}} | \overline{B}{}^0 \rangle$
- Use $|V_{ub}/V_{cb}|$, \mathcal{A}_{DK} , $S_{\psi K}$, $S_{\rho\rho}$, Δm_{B_d} , \mathcal{A}_{SL}
- Fit to η , ρ , r_d , θ_d
- Find whether $\eta = 0$ is allowed

 $S_{\psi K_S}, S_{\rho\rho}, \mathcal{A}_{DK}...$

The KM mechanism is at work!

$$\delta_{\rm KM} \neq 0$$

CKMFitter, hep-ph/0406184

Is $\delta_{\rm KM}$ the only source of CPV in meson decays?

Using CKMFitter package (Höcker et al., Eur. Phys. J. C21, 225 (01))

New Physics from B Physics

5/24

 $eta, lpha, \gamma$

 $S_{\psi K_S}, S_{\rho \rho}, \mathcal{A}_{DK}$

Very likely, $\delta_{\rm KM}$ is dominant!

 $S_{\psi K} = +0.69 \pm 0.03 \iff \sin 2\beta (\text{CKM fit}) = +0.74^{+0.07}_{-0.03}$

The KM mechanism successfully passed its first precision test $S_{\psi K_S}, S_{\rho\rho}, \mathcal{A}_{DK}$

Very likely, $\delta_{\rm KM}$ is dominant!

 $S_{\psi K} = +0.69 \pm 0.03 \iff \sin 2\beta (\text{CKM fit}) = +0.74^{+0.07}_{-0.03}$ The KM mechanism successfully passed its first precision test

 $\alpha(\pi\pi,\pi\rho,\rho\rho) = \left[101^{+16}_{-9}\right]^o \iff \alpha(\text{CKM fit}) = 96 \pm 16^o$

The KM mechanism successfully passed its second precision test

Very likely, $\delta_{\rm KM}$ is dominant!

 $S_{\psi K} = +0.69 \pm 0.03 \iff \sin 2\beta (\text{CKM fit}) = +0.74^{+0.07}_{-0.03}$ The KM mechanism successfully passed its first precision test

 $\alpha(\pi\pi,\pi\rho,\rho\rho) = \left[101^{+16}_{-9}\right]^o \iff \alpha(\text{CKM fit}) = 96 \pm 16^o$

The KM mechanism successfully passed its second precision test

$$\gamma(DK) = \left[63^{+15}_{-13}\right]^o \iff \gamma(\text{CKM fit}) = \left[57^{+7}_{-14}\right]^o$$

The KM mechanism successfully passed its third precision test

Is CPV in $K \rightarrow \pi\pi$ small because of flavor?

SM:

 $S_{\psi K_S}$

- $\epsilon \sim 10^{-3}, \epsilon' \sim 10^{-5}$ because of flavor suppression
- Some CP violating phases are order one

Approximate CP:

- All CPV phases are small
- All CP asymmetries are small

Is CPV in $K \to \pi\pi$ small because of flavor?

SM:

 $S_{\psi K_S}$

- $\epsilon \sim 10^{-3}, \epsilon' \sim 10^{-5}$ because of flavor suppression
- Some CP violating phases are order one

Approximate CP:

- All CPV phases are small
- All CP asymmetries are small

B Physics:

• $S_{\psi K} \sim 0.7$

 \implies Some CP violating phases are indeed $\mathcal{O}(1)$

 $\mathcal{A}_{K\mp \pi\pm}, \mathcal{A}_{\rho\pi}^{-+}$

Is CP violated in $\Delta B = 1$ processes?

SM:

• Indirect (M_{12}) and direct (A_f) CP violations are both large

Superweak:

• There is no direct (A_f) CP violation

K Physics:

- $\epsilon'/\epsilon = (1.72 \pm 0.18) \times 10^{-3}$
- \implies CP is violated in $\Delta S = 1$ processes $(s \rightarrow u\bar{u}d)$

 $\mathcal{A}_{K\mp \pi\pm}, \mathcal{A}_{\rho\pi}^{-+}$

Is CP violated in $\Delta B = 1$ processes?

SM:

• Indirect (M_{12}) and direct (A_f) CP violations are both large

Superweak:

• There is no direct (A_f) CP violation

K Physics:

- $\epsilon'/\epsilon = (1.72 \pm 0.18) \times 10^{-3}$
- \implies CP is violated in $\Delta S = 1$ processes $(s \rightarrow u\bar{u}d)$

B Physics:

•
$$\mathcal{A}_{K^{\mp}\pi^{\pm}} = -0.115 \pm 0.018, \ \mathcal{A}_{\rho\pi}^{-+} = -0.48 \pm 0.14$$

 \implies CP is violated in $\Delta B = 1$ processes $(b \to u\bar{u}s, b \to u\bar{u}d)$

Is there NP in $B^0 - \overline{B}^0$ mixing?

- Assume: New Physics in tree decays negligible
- Define $r_d^2 \exp(2i\theta_d) \equiv 1 + he^{i\sigma} \equiv \langle B^0 | \mathcal{H}^{\text{full}} | \overline{B}{}^0 \rangle / \langle B^0 | \mathcal{H}^{\text{SM}} | \overline{B}{}^0 \rangle$
- Use $|V_{ub}/V_{cb}|$, \mathcal{A}_{DK} , $S_{\psi K}$, $S_{\rho\rho}$, Δm_{B_d} , \mathcal{A}_{SL}
- Fit to η , ρ , r_d , θ_d (or h, σ)
- Find whether $h \neq 0$ $(r_d \neq 1)$ is allowed

Very likely, the KM mechanism dominates

CKMFitter

Agashe et al., hep-ph/0509117

For arbitrary phase,
$$h = |A_{\rm NP}/A_{\rm SM}| \sim 0.2 \pm 0.2$$

Is there NP in $b \rightarrow s$ transitions?

• Rare $b \to s$ processes consistent with the SM predictions

 \implies New Physics contributions to certain operators are strongly constrained (Z-penguin, magnetic)

 \implies New physics contributions to other operators are still very weakly constrained (chromomagnetic, dim-6)

Is there NP in $b \rightarrow s$ transitions?

SM:
$$\Delta S \equiv -\eta_{\rm CP} S - S_{\psi K} \approx 0, \quad C \approx 0$$

$f_{ m CP}$	ΔS	C
ϕK_S	-0.22 ± 0.19	-0.09 ± 0.15
$\eta' K_S$	$-0.19\pm0.09^{\dagger}$	-0.07 ± 0.07
$f_0 K_S$	$+0.06\pm0.24$	$+0.06\pm0.21$
$\pi^0 K_S$	-0.38 ± 0.26	-0.02 ± 0.13
ωK_S	-0.06 ± 0.30	-0.44 ± 0.24
$K_S K_S K_S$	-0.09 ± 0.23	-0.31 ± 0.17
$K^+K^-K_S^{\ddagger}$	-0.16 ± 0.17	$+0.09\pm0.10$

† Belle and Babar not quite consistent ($\Longrightarrow -0.19 \pm 0.13$) ‡ Not a CP eigenstate

$$\implies$$
 How good is \approx ?

Basics

- Formalism:
 - Effective \mathcal{H} for $b \to sq\bar{q}$ decays: $\mathcal{H} = \frac{G_F}{\sqrt{2}} \sum_{p=u,c} V_{ps}^* V_{pb} \left(\sum_{i=1}^2 C_i O_i^p + \sum_{i=3}^{10} C_i O_i + C_{7\gamma} O_{7\gamma} + C_{8g} O_{8g} \right)$
 - Decay amplitudes: $A_f = \langle f | \mathcal{H} | B^0 \rangle, \ \overline{A}_f = \langle f | \mathcal{H} | \overline{B}^0 \rangle, \ \lambda_f = e^{-i\phi_B}(\overline{A}_f / A_f)$
 - CP asymmetries:

$$S_f = 2\mathcal{I}m(\lambda_f)/(1+|\lambda_f|^2), \ C_f = (1-|\lambda_f|^2)/(1+|\lambda_f|^2)$$

• SM:

$$-A_f^{\rm SM} = A_f^c + A_f^u \text{ with } A_f^c \propto V_{cb}^* V_{cs} \text{ and } A_f^u \propto V_{ub}^* V_{us}$$
$$-A_f^{\rm SM} = A_f^c (1 + a_f^u e^{i\gamma})$$

The Problem

• Simple NP:

$$- C_i(m_W) = C_i^{\text{SM}}(m_W) + x_i \varepsilon e^{i\theta}, x_i \text{ known}$$
$$- A_f^{\text{SM}} = A_f^c \left[1 + a_f^u e^{i\gamma} + b_f^c \varepsilon e^{i\theta} \right]$$

• CP asymmetries:

$$-\Delta S_f = +2\cos 2\beta_{\text{eff}} \left[\mathcal{R}e(b_f^c)\varepsilon\sin\theta + \mathcal{R}e(a_f^u)\sin\gamma \right] -C_f = -2\mathcal{I}m(b_f^c)\varepsilon\sin\theta - 2\mathcal{I}m(a_f^u)\sin\gamma$$

• Problem:

- To be concvinced that $\varepsilon \neq 0$, we need to know a_f^u - $a_f^u = |(V_{ub}V_{us})/(V_{cb}V_{cs})| \times \text{hadronic parameters}$

Factorization-related methods

Example: $B \to K^0 \pi^0$:

$$\begin{aligned} A_{K^0\pi^0}^c &\approx iV_{cb}^*V_{cs}\frac{G_F}{2}f_K F^{B\to\pi}(m_K^2)(m_B^2 - m_\pi^2)\left(a_4 + r_\chi a_6\right), \\ A_{K^0\pi^0}^u &\approx iV_{ub}^*V_{us}\frac{G_F}{2}\left[f_K F^{B\to\pi}(m_K^2)(m_B^2 - m_\pi^2)\left(a_4 + r_\chi a_6\right)\right. \\ &\left. - f_\pi F^{B\to K}(m_\pi^2)(m_B^2 - m_K^2)a_2\right] \end{aligned}$$

where $r_{\chi} = 2m_K^2 / [m_b(m_s + m_d)], a_i \equiv C_i + C_{i\pm 1} / N_c$

$$a_{K\pi}^{u} \approx \lambda^{2} R_{u} \left(1 - \frac{f_{\pi}}{f_{K}} \frac{F^{B \to K}}{F^{B \to \pi}} \frac{a_{2}}{a_{4} + r_{\chi} a_{6}} \right) \approx 2.75 \lambda^{2} R_{u} \approx 0.052$$
$$\implies \Delta S_{\pi K_{S}} \approx 0.06, \quad C_{\pi K_{S}} \approx 0$$

New Physics from B Physics

15/24

$\Delta S_{\pi^0 K_S}$ in Factorization-related methods

$\Delta S_{\pi^0 K_S}$	Method	hep-ph/	Authors	
$+0.06 \pm 0.04$	NF	0503151	Buchalla, Hiller, Nir, Raz	
$+0.04\pm0.03$	NF+model	0502235 Cheng, Chua, Soni		
$+0.07\pm0.04$	QCDF	0505075	Beneke	
$+0.06\pm0.03$	PQCD	0508041	Li, Mishima, Sanda	
$+0.08\pm0.16$	SCET+SU(3)	0510241	Bauer, Rothstein, Stewart	

SU(3)-based methods

• For
$$b \to s$$
, define: $d_f^q = A_f^q / (V_{qb}^* V_{qs})$
 $A_f = V_{cb}^* V_{cs} d_f^c + V_{ub} V_{us}^* d_f^u$

• For
$$b \to d$$
, define: $h_{f'}^q = A_{f'}^q / (V_{qb}^* V_{qd})$
 $A_{f'} = V_{cb}^* V_{cd} h_{f'}^c + V_{ub} V_{ud}^* h_{f'}^u$

The approximate SU(3) symmetry of the strong interactions $\implies d_f^q = \sum_{f'} X_{f'} h_{f'}^q$ where $X_{f'}$ are known (CG) coefficients

$$\left|a_{f}^{u}\right| = \frac{\left|V_{ub}V_{us}d_{f}^{u}\right|}{\left|V_{cb}V_{cs}d_{f}^{c}\right|} \leq \left|\frac{V_{us}}{V_{ud}}\right| \frac{\Sigma_{f'}\left|X_{f'}\right|\sqrt{\mathcal{B}(B \to f')}}{\sqrt{\mathcal{B}(B \to f)}}$$

SU(3)-based methods

 \ominus SU(3) breaking effects of $\mathcal{O}(0.3)$ \implies The bounds are only approximate

 \ominus Adding (conservatively) the amplitudes coherently

+ Dependence on measured $\mathcal B\text{'s}$

 \implies Bounds often much weaker than actual estimates

 \oplus Hadronic model independence

 \implies Complimentary to the factorization-related methods

SU(3)-based methods

Example: $B \to K^0 \pi^0$:

hep-ph/0310020 (Gronau, Grossman, Rosner), hep-ph/0509125 (Raz)

Estimating $\Delta S_f \equiv -\eta_f S_f - S_{\psi K_S}$

$f_{ m CP}$	EXP	NF^*	$QCDF^{**}$	$SU(3)^{***}$
ϕK_S	-0.22 ± 0.19	$+0.02\pm0.01$	$+0.02\pm0.01$	$(K^*K)^\dagger$
$\eta' K_S$	-0.19 ± 0.09	$+0.01\pm0.02$	$+0.01\pm0.01$	0.31
$f_0 K_S$	$+0.06 \pm 0.24$			
$\pi^0 K_S$	-0.38 ± 0.26	$+0.06\pm0.04$	$+0.07\pm0.04$	0.18
ωK_S	-0.06 ± 0.30	$+0.19^{+0.06}_{-0.14}$	0.13 ± 0.08	$(K^*K)^\dagger$
$K_S K_S K_S$	-0.08 ± 0.23			1(0.37)
$K^+K^-K_S^{\ddagger}$	-0.16 ± 0.17			0.94

 \ast Buchalla, Hiller, Nir, Raz, hep-ph/0503151

** Beneke, hep-ph/0505075

*** Grossman, Ligeti, Quinn, Nir, hep-ph/0303171; Raz et al., hep-ph/0505195,0508046,0509125

† Available once $\mathcal{B}(K^*K)$ is measured

NP in $b \to s$

Supersymmetry: constraints and predictions

Silvestrini, hep-ph/0510077

Supersymmetry: constraints and predictions

$(\delta^d_{23})_{MN}$	Upper Bound [*]	$ \Delta S_{\phi K_S} \sim 0.1^{**}$	Alignment***
$(\delta^d_{23})_{LL}$	$\lambda^2(\mathcal{R}e) - \lambda(\mathcal{I}m)$	λ	λ^2
$(\delta^d_{23})_{RR}$	1	λ	$\lambda^4 - \lambda^2$
$(\delta^d_{23})_{LR}$	$\lambda^4(\mathcal{R}e) - \lambda^3(\mathcal{I}m)$	λ^4	$\lambda^2(m_b/ ilde{m})$
$(\delta^d_{23})_{RL}$	λ^3	λ^4	$\lambda^4(m_b/ ilde{m})$

 \ast Ciuchini et al., hep-ph/0407073

** Silvestrini, hep-ph/0510077

* * * Nir, Raz, hep-ph/0206064

Conclusions

Unitarity Triangles 2005

There is still a lot to be learned from future measurements

Höcker, T'Jampens, Laplace (05)

Conclusions

Conclusions

- The KM phase is different from zero (SM violates CP)
- The KM mechanism is, very likely, the dominant source of the CP violation observed in meson decays
- The size and the phase of NP contributions to $B^0 \overline{B}^0$ mixing are severely constrained
- Complete alternatives to the KM mechanism are excluded (Superweak, Approximate CP)
- Corrections to KM are possible, particularly for $b \rightarrow s$; No evidence for such corrections at present
- There is still a lot to be learned from flavor/CP physics

 $S_{\phi K_S}, S_{\eta' K_S}, S_{\pi^0 K_S} ...$

Is there NP in $b \rightarrow s$ transitions?

New Physics from B Physics

25/24

Experimental status of CP asymmetries

$f_{ m CP}$	$-\eta_{ m CP}S$	C
$\psi\pi^0$	$+0.69\pm0.25$	-0.11 ± 0.20
D^+D^-	$+0.29\pm0.63$	$+0.11\pm0.35$
$D^{*+}D^{*-}$	$+0.75 \pm 0.23$	-0.04 ± 0.14
$\pi^+\pi^-$	$+0.50 \pm 0.12(0.18)$	$-0.37 \pm 0.10(0.23)$
$\pi^0\pi^0$		-0.28 ± 0.39
$\rho^+ \rho^-$	$+0.22 \pm 0.22$	-0.02 ± 0.17

The NP CP/Flavor Problem

- $m_H^2 \sim (m_H^2)_{\text{tree}} + \frac{1}{16\pi^2} \Lambda_{\text{NP}}^2$ To avoid fine-tuning of the Higgs mass, $\Lambda_{\text{NP}} \lesssim 4\pi m_W \sim 1 \ TeV.$
- $\mathcal{L}_{\mathrm{NP}} \sim \frac{1}{\Lambda_{\mathrm{NP}}^2} s \bar{d} s \bar{d}$ To avoid too large contributions to ε_K and to $\Delta m_{K,D,B}$, $\Lambda_{\mathrm{NP}} \gtrsim 10^{3-4} TeV$.

New Physics at the TeV scale must have a very non-generic flavor and CP structure

SU(3) Relations

$$A_{f} = V_{cb}^{*} V_{cs} a_{f}^{c} + V_{ub}^{*} V_{us} a_{f}^{u}, \quad \xi_{f} \equiv |V_{ub} V_{us} / V_{cb} V_{cs}| (a_{f}^{c} / a_{f}^{u})$$
$$-\eta_{f} S_{f} - S_{\psi K} = 2\cos 2\phi_{1} \sin \phi_{3} \mathcal{R}e(\xi_{f})$$
$$Grossman, Ligeti, Nir, Quinn (03)$$
$$Engelhard, Nir, Raz (05)$$

• Example:
$$|\xi_{\eta'K_S}| \leq \sqrt{\frac{3\mathcal{B}(\eta'\eta)}{2\mathcal{B}(\eta'K_S)}} + \sqrt{\frac{\mathcal{B}(\eta'\pi^0)}{2\mathcal{B}(\eta'K_S)}}$$

mode	$\eta' K_S$	$\pi^0 K_S$	$K^{-}\pi^{+}$	$\eta' K^+$	ϕK^+	$K_S K_S K_S$
$ \xi <$	0.25	0.18	0.23	0.07	0.22	0.31^{\dagger}

† Extra (mild) dynamical assumptions