

from KEK-PS to J-PARC: future Kaon program

Takeshi K. Komatsubara (KEK-IPNS)
09 Nov 2005, WG2 of FlavLHC workshop at CERN
[in 24 slides, 20 minutes]

- physics motivation [talks by G. Isidori, L. Littenberg, I. Bigi]
- KEK I2GeV PS (I977-2005) and J-PARC (2008-)
- site / accelerators / facilities
- $\mathbf{K}_{\mathbf{L}}^{\mathbf{0}} \rightarrow \pi^{\mathbf{0}} \nu \bar{\nu}$
- T-violation in $\mathbf{K}^{+} \rightarrow \pi^{0} \mu^{+}{ }_{\nu}$
- $\mathbb{K}^{+} \rightarrow \pi^{+} \nu \bar{\nu}$
- how we do these measurements at J-PARC: Hadron Experimental Hall for kaon physics

KEK I2GeV PS experiments, by Dec 2005

- K2K long-baseline neutrino: data taking completed
- E391a $\mathbf{K}_{\mathrm{L}}^{0} \rightarrow \pi^{\mathbf{0}} \nu \bar{\nu}$: running! [Nov - Dec 12, East Hall]
- hadron/nuclear experiments are scheduled. [- Dec 28, North Hall]

Japan Proton Accelerator Research Complex

(Do not forget a hyphen between " J" and " PARC".)

Phase 1
Phase 2
Hadron Experimental
3 GeV Synchrotron Materials and Life Facility

Linac (Superconducting)

Nuclear Transmutation

Linac
(Normal Conducting)

Neutrinos to
SuperKamiokande

J-PARC 50GeV-PS operation (Slow Ext)

	MAIN RING CYCLE \qquad				
	KEK-PS	AGS	J-PARC Phase-1	(mod ?)	
proton energy	12	24	30	30	GeV
protons per pulse	2.5	65	200	100	$10^{12} /$ spill
cycle	4.0	6.4	3.42	>4.42	sec
average current	0.1	1.63	9.5	<3.6	$\mu \mathrm{A}$
beam spill	2.0	4.1	0.7	>1.7	sec
duty factor	50	64	20	>39	\%
instantaneous rate	1.3	16	286	<59	$10^{12} / \mathrm{sec}$

kaon decay experiments at KEK/J-PARC

E391a http://www-ps.kek.jp/e391/ at E-Hall
the first experiment dedicated to $\mathrm{K}_{L}^{0} \rightarrow \boldsymbol{\pi}^{0} \boldsymbol{\nu} \bar{\nu}$

Experimental method

- detect 2 g from pio decay + require no other particles
(I) measure gamma hit position and energy

(2) reconstruct decay vertex asuuming $M_{2 g}=M_{\text {pio }}$

(3) require missing Pt and decay vertex in the fidutial region

Status and Prospects of E39la

- Run-I (Feb-July / 2004)

IO\% of the dataset (Kaon2005, LP2005)

preliminary limit $<2.86 \times 10^{-7}$

Status and Prospects of E39la (cont.)

- Run-I (Feb-July / 2004) ... full-data being analyzed

- Run-II (Feb-Apr / 2005)

The problem was fixed; better quality (and larger acceptance)

- Run-III (Nov. I-Dec. 12 / 2005)
already taking physics data, the same quality as Run-II
goal of E391a: Grossman-Nir limit $\left(\mathbf{1 . 4} \times \mathbf{1 0}^{-\mathbf{9}}\right)$

\square Slow beam hall in Phase 1
- $60 \mathrm{~m}^{\mathrm{W}} \times 56 \mathrm{~m}^{\mathrm{L}}$ extended to $100 \mathrm{~m}^{\llcorner }$ in Phase2
- one primary line
- one target
- several 2nd. lines

Fig. 1
Hadron Hall Layout Plan

30 GeV protons on TI target, I6deg KL beamline (20 m long, 5μ str) for the Ist-step experiment

- merits of J-PARC experiments
- higher energy, <PK>=2.I GeV/c
efficient photon detection, lower n/K (~10)
- larger K flux
- upgrades of the E39la detector
- Csl calorimeter with smaller blocks (of longer crystals)
- thicker photon-detection counters
- new detector prototypes

Fig. 2. Arrangement of CsI crystals.

$2.5 \mathrm{~cm} \times 2.5 \mathrm{~cm}: 2224$
$5 \mathrm{~cm} \times 5 \mathrm{~cm}: 604$
sensitivity: ~2.6 SM events/Snowmass yr/I00Tp for the first observation

based on Bryman-Buras-Isidori-Littenberg, hep-ph/0505I7I
in the next step to test MinFlavViol models with

$\mathbf{K}_{\mathbf{L}}^{0} \rightarrow \pi^{0} \nu \bar{\nu}$
(> 100 signal events)
new detector with:

- longer decay region
- larger calorimeter

- high rate capability
... studies in progress

E246/E470 http://www-ps.kek.jp/e246/ at N-Hall

T-violating P_{t} in $\mathrm{K}^{+} \rightarrow \boldsymbol{\pi}^{0} \boldsymbol{\mu}^{+} \boldsymbol{\nu}(\mathrm{B} . \mathrm{R} .=3.27 \%)$

- $\boldsymbol{P}_{T} \equiv s_{\mu^{+}} \times \frac{\left(p_{\pi^{0}} \times p_{\mu^{+}}\right)}{\left|p_{\pi^{0}} \times p_{\mu^{+}}\right|}:$T-odd
\rightarrow an observable of CP violation

Model	$K^{+} \rightarrow \pi^{0} \mu^{+} v$	$K^{+} \rightarrow \mu^{+} v \gamma$
- Standard Model	$<10^{-7}$	$<10^{-7}$
- Final State Interactions	$<10^{-5}$	$<10^{-3}$
- Multi-Higgs	$\begin{gathered} \leq 10^{-3} \\ \mathrm{P}_{\mathrm{T}}\left(\mathrm{~K}^{+} \xrightarrow{\rightarrow} \pi^{0} \mu^{+} \mathrm{v}\right) \end{gathered}$	$\begin{gathered} \leq 10^{-3} \\ \left(\mathrm{~K}^{+} \rightarrow \pi^{0} \mu^{+} \gamma\right) \end{gathered}$
- SUSY with squarks mixing	$\begin{aligned} & \leq 10^{-3} \\ \mathrm{P}_{\mathrm{T}}\left(\mathrm{~K}^{+}\right. & \rightarrow \pi^{0} \mu^{+} \nu \end{aligned}$	$\begin{gathered} \leq 10^{-3} \\ \left(\mathrm{~K}^{+} \rightarrow \pi^{0} \mu^{+} \gamma\right) \end{gathered}$
- SUSY with R-parity breaking	$\leq 4 \times 10^{-4}$	$\leq 3 \times 10^{-4}$
- Leptoquarks	$\leq 10^{-2}$	$\leq 5 \times 10^{-3}$
■ Left-Right symmetric model	0	$<7 \times 10^{-3}$

- $P_{T}(K \rightarrow \pi \mu \nu)$ and $P_{T}(K \rightarrow \mu \nu \gamma)$ are complementary.

E246 results on $\boldsymbol{P}_{\boldsymbol{t}}$ in $\mathrm{K}^{+} \rightarrow \boldsymbol{\pi}^{\mathbf{0}} \boldsymbol{\mu}^{+} \boldsymbol{\nu}$
PRL 93(2004) 131601 (combining all the datasets: 1996-97, 98, and 99-2000)

- $P_{t}=-0.0017 \pm 0.0023_{\text {stat }} \pm 0.0011_{\text {syst }}$

$$
\left(\left|P_{t}\right|<0.50 \%\right)
$$

- T-violating physics parameter $\operatorname{Im}(\boldsymbol{\xi})\left(\xi \equiv \frac{f_{+}\left(q^{2}\right)}{f_{-}\left(q^{2}\right)}\right)$:
$\operatorname{Im}(\xi)=-0.0053 \pm 0.0071_{\text {stat }} \pm 0.0036_{\text {syst }}$

upgrading the E246 apparatus, in an early stage of J-PARC:
- $\mathrm{CsI}(\mathrm{TI})$ readout
- photon veto system
or
new detector for T-violation exp. (better sensitivity)
- additional tracker
- polarimeter system

	E246 upgrade	E246(KEK)
K^{+}beam intensity	$10^{6} / \mathrm{s}$	$10^{5} / \mathrm{s}$
K^{+}stopping efficiency	0.40	0.40
Net runtime	$10^{7} \mathrm{~s}$	$1.5 \times 10^{7} \mathrm{~s}$
Acceptance	3.8×10^{-4}	5.5×10^{-5}
Number of decays	1.5×10^{9}	3.3×10^{7}
fwd/bwd events	5×10^{8}	1.1×10^{7}
Analyzing power	0.27	0.271
P_{T} kinematic atten.	1.0	~ 0.70
δP_{T} (only fwd/bwd)	1.67×10^{-4}	2.3×10^{-3}
$\delta P_{T}(f w d / b w d+L / R)$	1.13×10^{-4}	-

- K0.8 designed by J.Doornbos (2005) as a branch of the KI.I line
- single-stage DC separator with a vertical intermediate focus
- Acceptance $=6 \mathrm{msr} \% \Delta p / p$.

Acc (K1.1) ~ $4 \mathrm{msr} \% \Delta p / p$ Acc (LESB3) ~ $50 \mathrm{msr} \% \Delta p / p$

- $\quad I_{\mathrm{K}^{+}} \sim(1 \sim$ a few $) \times 10^{6} / \mathrm{s}$
- $\pi^{+} / K^{+}<0.5$
- Beam spot:
$d_{x} \sim d_{y} \sim 1 \mathrm{~cm} \ll$ @K5
not suitable for \mathbb{K}^{+}
for the ultimate goals of kaon program... extension of the Hall

- Hall size $=60 \mathrm{~m}(\mathrm{~W}) \times 100 \mathrm{~m}(\mathrm{~L})$
- More than 2 target stations

summary: kaon program at J-PARC

- new J-PARC accelerators and Hadron Exp Hall under construction
- kaon decay program:
natural extension of the experiments at KEK-PS
(E391a, E246, ...)
- the experimental studies of

$$
\mathbf{K}_{\mathbf{L}}^{0} \rightarrow \pi^{0} \nu \bar{\nu} \quad \mathbf{K}^{+} \rightarrow \pi^{\mathbf{0}} \mu^{+} \nu \quad \mathbf{K}^{+} \rightarrow \pi^{+} \nu \bar{\nu}
$$

are unique in quark-flavor physics and complementary to the energy-frontier physics at LHC.

