# A Model-Independent Analysis of New Physics Contributions in $|\Delta F|=2$ transitions 

J. CHARLES (CPT Marseille), H. LACKER (Dresden University), A. ROBERT, S. MONTEIL (LPC IN2P3 - University Blaise Pascal) on behalf the CKMfitter group

Part I. Introduction.
Part II. Exploring New Physics in $B_{d}$ mixing. Basic inputs. Adding $\gamma$ and $\alpha$ measurements. Adding a ${ }_{S L}$ contribution.

Part III. Exploring New Physics in K mixing.
Part IV. Prospective for New Physics in the $B_{s}$ mixing.

$\Leftrightarrow$ Standard Model accommodates successfully
all the present flavour data.

There is no need a priori for NP contributions in tree-mediated flavour changing processes.

## Is there still room for new physics?

Follow the strategy developed in the paper:
The CKMfitter group, Eur. Phys. J. C41 (2005)
Past \& present attempts (a selection of)
Soares, Wolfenstein, Phys. Rev. D47 (1993)
Grossman, Nir, Worah, Phys. Lett. B407 (1996)
Laplace, Ligeti, Nir, Perez, Phys. Rev. D65 (2002)

> Ciuchini et al., hep-ph/0307195

Bona et al., hep-ph/0509219
Assumption $\Leftrightarrow$ no NP in tree-mediated decay amplitudes:
$\left|\mathrm{V}_{\mathrm{ub}}\right| /\left|\mathrm{V}_{\mathrm{cb}}\right|$ and $\gamma$ are the main inputs constraining the CKM parameters.

Introduce $N P$ in $\Delta B=2$ transitions accounted for model-independently through two additional parameters.

$$
r_{d}^{2} e^{i 2 \theta_{d}}=\frac{\left\langle B^{0}\right| H_{e f f}^{f u l l}\left|\bar{B}^{0}\right\rangle}{\left\langle B^{0}\right| H_{e f f}^{S M}\left|\bar{B}^{0}\right\rangle}
$$

```
\(\rightarrow\left|V_{u b}\right|,\left|V_{c b}\right| \Leftrightarrow\) Remove b-> sy component from the inclusive \(\mathrm{V}_{\mathrm{ub}}\) average
\[
\rightarrow r_{d}^{2} \Delta m_{d} \quad \mathrm{~V}_{\mathrm{ub}}=(4.15 \pm 0.12 \pm 0.23) \cdot 10^{-3}
\]
\[
\rightarrow \sin \left(2 \beta+2 \theta_{d}\right)
\]
\[
\rightarrow \cos \left(2 \beta+2 \theta_{d}\right)
\]
```




- The $S M$ value on $2 \theta_{d}=0$ is at the border of the $C L_{\text {Max }}$ region.
- Shows slight disagreement between $\mathrm{V}_{\mathrm{ub}}$ and $\sin (2 \beta)$.
- Any region with $2 \theta_{d}>\pi / 2$ is discarded.
$\Leftrightarrow$ Adding $\gamma$ measurements.
$\rightarrow\left|V_{u b}\right| /\left|V_{c b}\right|$
$\rightarrow r_{d}^{2} \Delta m_{d}$
$\rightarrow \sin \left(2 \beta+2 \theta_{d}\right)$
$\rightarrow \cos \left(2 \beta+2 \theta_{d}\right)$
$\rightarrow \gamma(A D S+G L W+G G S Z)$


- $V_{u b}$ and $\gamma$ constrain the CKM parameters.
- Two solutions for NP parameters emerge.




## $N P$ in $B_{d}-\bar{B}_{d}$ mixing $a_{s L}$ in the game

$$
a_{\mathrm{SL}}=-\operatorname{Re}\left(\frac{\Gamma_{12}}{M_{12}}\right)^{S M} \frac{\sin 2 \theta_{d}}{r_{d}^{2}}+\operatorname{Im}\left(\frac{\Gamma_{12}}{M_{12}}\right)^{S M} \frac{\cos 2 \theta_{d}}{r_{d}^{2}} \begin{aligned}
& \left(\Gamma_{12} / \mathrm{M}_{12}\right. \text { is considered here } \\
& \text { at Leading Order })
\end{aligned}
$$

Though the experimental precision is far from the prediction, $a_{S L}$ is a crucial input for constraining NP parameters. Only observable depending on both $r_{d}{ }^{2}$ and $2 \theta_{d}$.





- As far as the lattice uncertainties are considered, $f B_{d}$ is the relevant parameter to improve.
- A factor 2 has important impact. A factor 10 is not decisive with the current experimental uncertainties of the observables.

Isolate the pure NP contribution from (SM+NP) terms:

$$
M_{12}=M_{12 S M}\left(1+h_{d} e^{2 i \sigma_{d}}\right)
$$

Agashe et al. hep-ph/0509117

Without $\gamma, \alpha$ and $a_{S L}$ constraints


$$
\begin{aligned}
& \Delta m_{d}=\left|1+h_{d} e^{2 i \sigma_{d}}\right| \Delta m_{d}^{S M} \\
& 2 \beta \rightarrow 2 \beta+\operatorname{Arg}\left(1+h_{d} e^{2 i \sigma_{d}}\right) \\
& a_{S L}=\operatorname{Im}\left(\frac{\Gamma_{12}^{S M}}{M_{12}^{S M}\left(1+h_{d} e^{2 i \sigma_{d}}\right)}\right)
\end{aligned}
$$

With $\gamma, \alpha$ and $a_{S L}$ constraints


$$
r_{K}=\frac{\operatorname{Im}\left\langle K^{0}\right| H_{c}^{\text {full }} \begin{array}{c}
\text { eff }
\end{array}\left|\bar{K}^{0}\right\rangle}{\operatorname{Im}\left\langle K^{0}\right| H_{\substack{S M \\
e \\
\text { eff }}}\left|\bar{K}^{0}\right\rangle}
$$



$$
\begin{aligned}
& \rightarrow\left|V_{u b}\right| /\left|V_{c b}\right| \\
& \rightarrow r_{d}^{2} \Delta m_{d} \\
& \rightarrow \sin \left(2 \beta+2 \theta_{d}\right) \\
& \rightarrow \cos \left(2 \beta+2 \theta_{d}\right) \\
& \rightarrow \gamma \quad(A D S+G L W+G G S Z \quad) \\
& \rightarrow \alpha \sin \left(2 \beta+2 \theta_{d}+2 \gamma\right) \\
& \rightarrow a_{\mathrm{SL}} \\
& \rightarrow r_{K} \varepsilon_{K}
\end{aligned}
$$

## (1 $\sigma$ )

$$
\left\{\begin{array}{c}
r_{d}^{2}=0.92_{-0.25}^{+0.76} \\
2 \theta_{d}=-4.8_{-9.1}^{+4.1} \mathrm{deg} \\
r_{K}=1.09_{-0.46}^{+0.45}
\end{array}\right.
$$



The NP region at $2 \theta_{d}=\pi / 2$ in $B_{d}$ mixing implies also NP in $K$ mixing corresponding to $\varepsilon_{k}<0$

## NP in $B_{s}$ mixing Prospective study (I)

The angle governing the mixing in the $B_{s}$ system is already known to good precision in the SM


NP in $B_{s}$ mixing ( $\Delta \mathrm{B}=2$ and $\Delta \mathrm{S}=2$ ) is accounted for model-independently through two additional parameters, akin to the $B_{d}$ system :

$$
r_{s}^{2} e^{i 2 \theta_{s}}=\frac{\left\langle B_{s}^{0}\right| H_{e f f}^{\text {full }}\left|{\overline{B_{s}}}^{0}\right\rangle}{\left\langle B_{s}{ }^{0}\right| H_{e f f}^{\mathrm{SM}}\left|{\overline{B_{s}}}^{0}\right\rangle}
$$

- LHCb expected sensitivities correspond to $2 \mathrm{fb}^{-1}$ (See Talks of O.Schneider \& L.Fernandez):
$\rightarrow \Delta m_{s}=20.000 \pm 0.011 \mathrm{ps}^{-1}$ from $B_{s} \rightarrow D_{s} \pi$
$\rightarrow A_{\text {mix }}=\sin \left(2 \beta_{s}\right)=0.036 \pm 0.028$
from combined $\quad B_{s} \rightarrow J / \Psi \Phi, B_{s} \rightarrow J / \Psi \eta$ and $B_{s} \rightarrow \eta_{c} \phi$
$\rightarrow \gamma-2 \beta_{s}=57 \pm 14$ deg from $B_{s} \rightarrow D_{s} K$

$$
\rightarrow r_{s}^{2} \Delta m_{s}
$$

$\rightarrow \gamma=59 \pm 8$ deg from $B_{d} \rightarrow D^{\left({ }^{*}\right)} K$

$$
\begin{aligned}
& \rightarrow\left|V_{u b} /\left|V_{c b}\right|\right. \\
& \rightarrow r_{d}^{2} \Delta m_{d} \\
& \rightarrow \sin \left(2 \beta+2 \theta_{d}\right) \\
& \rightarrow \cos \left(2 \beta+2 \theta_{d}\right) \\
& \rightarrow \gamma(A D S+G L W+G G S Z)_{-1} \\
& \oplus \text { Adding LHCb sensitivity } \\
& \rightarrow \alpha \sin \left(2 \beta+2 \theta_{d}+2 \gamma\right) \\
& \rightarrow a_{\text {SL }} \\
& \rightarrow r_{K}^{2} \varepsilon_{K} \\
& \rightarrow r_{s}^{2} \Delta m_{s} \\
& \rightarrow \sin \left(2 \beta_{s}+2 \theta_{s}\right) \\
& \rightarrow \sin \left(2 \beta_{s}+2 \theta_{s}-\gamma\right)
\end{aligned}
$$


(1 $\sigma$ )

$$
\begin{gathered}
r_{s}^{2}=1.01_{-0.09}^{+0.11} \\
2 \theta_{s}=0.1_{-1.7}^{+1.6} \mathrm{deg}
\end{gathered}
$$

- $B_{d}$ mixing: which room for new physics? ... Not much.
- K mixing: the only constraint is from $\varepsilon_{\mathrm{k}} \Leftrightarrow$ under constrained pb as far as specific NP phase \& modulus are considered.
- $B_{s}$ mixing: LHCb will immediately see NP if $O\left(10^{\circ}\right)$.



## APPENDIX

## Main inputs to the fit

$$
\begin{aligned}
& \left|\mathrm{V}_{\mathrm{ub}}\right| \text { (average) }=(4.15 \pm 0.12 \pm 0.23) \cdot 10^{-3} \\
& \left|V_{c b}\right|(\text { incl })=(41.58 \pm 0.45 \pm 0.58) .10^{-3} \\
& \left|\mathrm{~V}_{\mathrm{cb}}\right|(\text { excl })=(41.4 \pm 2 \cdot 1) \cdot 10^{-3} \\
& \left|\varepsilon_{k}\right|=(2.282 \pm 0.017) .10^{-3} \\
& \Delta m_{d}=(0.509 \pm 0.004) \mathrm{ps}^{-1} \\
& \sin (2 \beta)=0.687 \pm 0.032 \\
& S^{+}{ }_{\pi \pi}=-0.50 \pm 0.12 \\
& C^{++\pi}=-0.37 \pm 0.10 \\
& C^{000} \pi n=-0.28 \pm 0.39 \\
& \mathrm{~B}_{\pi \pi, \text { all charge }} \text { Inputs to isospin analysis } \\
& S^{+{ }^{+\rho}, L}=-0.22 \pm 0.22 \\
& C^{+-}{ }_{\rho \rho, L}=-0.02 \pm 0.17 \\
& \mathrm{~B}_{\text {pop,L,all charge }} \text { Inputs to isospin analysis } \\
& B \rightarrow \rho \pi \rightarrow 3 \pi \text { Time dependent Dalits analysis } \\
& B \rightarrow D^{(*)} K^{(*)}(-) \text { Inputs to GLW,ADS \& GGSZ analysis } \\
& \Delta m_{k}=(3.490 \pm 0.006) \cdot 10^{-12} \mathrm{MeV} \\
& B_{K}=0.79 \pm 0.04 \pm 0.09 \\
& m_{K^{+}}=(493.677 \pm 0.016) \mathrm{MeV} \\
& f_{\mathrm{K}}=159.8 \pm 1.5 \mathrm{MeV} \\
& \eta_{t+}=0.5765 \pm 0.0065 \\
& \eta_{c t}=0.47 \pm 0.04 \\
& \eta_{B}(\overline{M S})=0.551 \pm 0.007 \\
& f_{B d} \delta B_{d}=(223 \pm 33 \pm 12) \mathrm{MeV} \\
& a_{S L}=-0.0026 \pm 0.0067
\end{aligned}
$$

## $\gamma$ measurements



$$
B R\left(B^{+} \rightarrow \tau^{+} v\right)=\frac{G_{F}^{2} m_{B} \tau_{B}}{8 \pi} m_{\tau}^{2}\left(1-\frac{m_{\tau}^{2}}{m_{B}^{2}}\right)^{2} f_{B}^{2}\left|V_{u b}\right|^{2} \leftarrow \begin{aligned}
& \text { With } \Delta m_{d} \text {, remove } \\
& \text { the } f_{B} \text { dependence }
\end{aligned}
$$




- Powerful in the future for constraining the SM region.
- Potential annihilation by means of $\mathrm{H}^{+}$prevents for considering this input in the analysis.

