Flavour in the era of the LHC

A Model-Independent Analysis of New Physics Contributions in $|\Delta F| = 2$ transitions

J. CHARLES (CPT Marseille), H. LACKER (Dresden University), A. ROBERT, S. MONTEIL (LPC IN2P3 - University Blaise Pascal)

on behalf the CKMfitter group
Outline - New Physics in $|\Delta F|=2$ transitions

Part I. Introduction.

Part II. Exploring New Physics in B_d mixing.
 Basic inputs.
 Adding γ and α measurements.
 Adding a_{SL} contribution.

Part IV. Prospective for New Physics in the B_s mixing.
Quality of CKM Standard fit

Standard Model accommodates *successfully* all the present flavour data.

There is no need *a priori* for NP contributions in tree-mediated flavour changing processes.
Is there still room for new physics?

Follow the strategy developed in the paper:

Past & present attempts (a selection of)

Ciuchini et al., hep-ph/0307195
Bona et al., hep-ph/0509219

Assumption \Leftrightarrow no NP in tree-mediated decay amplitudes:
$|V_{ub}|/|V_{cb}|$ and γ are the main inputs constraining the CKM parameters.

Introduce NP in $\Delta B=2$ transitions accounted for model-independently through two additional parameters.

$$r_d^2 e^{i2\theta_d} = \frac{\left< B^0 | H^{\text{full _ eff}} | \bar{B}^0 \right>}{\left< B^0 | H^{\text{SM _ eff}} | \bar{B}^0 \right>}$$
- $|V_{ub}|, |V_{cb}| \leftrightarrow$ Remove $b \to s\gamma$ component from the inclusive V_{ub} average
- $r_d^2 \Delta m_d$
- $\sin(2\beta + 2\theta_d)$
- $\cos(2\beta + 2\theta_d)$

- The SM value on $2\theta_d=0$ is at the border of the CL_{Max} region.
- Shows slight disagreement between V_{ub} and $\sin(2\beta)$.
- Any region with $2\theta_d > \pi/2$ is discarded.
Adding γ measurements.

- $|V_{ub}| / |V_{cb}|$
- $r_d^2 \Delta m_d$
- $\sin(2\beta + 2\theta_d)$
- $\cos(2\beta + 2\theta_d)$
- γ ($ADS + GLW + GGSZ$)

- V_{ub} and γ constrain the CKM parameters.
- Two solutions for NP parameters emerge.
Adding α measurements.

$|V_{ub}|/|V_{cb}|$

$r_d^2 \Delta m_d$

$\sin(2\beta + 2\theta_d)$

$\cos(2\beta + 2\theta_d)$

$\sin(2\beta + 2\theta_d + 2\gamma)$

The α constraint (w/o γ) displays also four solutions.

Reinforce the SM region but the preferred NP region is not the one defined by γ.
\[|V_{ub}|/|V_{cb}| \]
\[r_d^2 \Delta m_d \]
\[\sin(2\beta + 2\theta_d) \]
\[\cos(2\beta + 2\theta_d) \]
\[\gamma \ (ADS + GLW + GGSZ) \]
\[\sin(2\beta + 2\theta_d + 2\gamma) \]

\(\gamma \) and \(\alpha \) are of major importance in constraining the NP parameters.

NB: \(\sin(2\beta+2\theta_d+\gamma) \) is not included. (almost no influence.)
NP in $B_d - \overline{B}_d$ mixing a_{SL} in the game

\[
a_{SL} = -\text{Re} \left(\frac{\Gamma_{12}}{M_{12}} \right)^{SM} \frac{\sin 2\theta_d}{r_d^2} + \text{Im} \left(\frac{\Gamma_{12}}{M_{12}} \right)^{SM} \frac{\cos 2\theta_d}{r_d^2} \quad (\Gamma_{12}/M_{12} \text{ is considered here at Leading Order})
\]

Though the experimental precision is far from the prediction, a_{SL} is a crucial input for constraining NP parameters. Only observable depending on both r_d^2 and $2\theta_d$.

\[
a_{SL} = -0.0026 \pm 0.0067 \quad (\text{HFAG 2005})
\]
NP parameters extraction

$\rightarrow |V_{ub}|/|V_{cb}|$
$\rightarrow r_d^2 \Delta m_d$
$\rightarrow \sin(2\beta + 2\theta_d)$
$\rightarrow \cos(2\beta + 2\theta_d)$
$\rightarrow \gamma \ (ADS + GLW + GGSZ)$
$\rightarrow \alpha \ \sin(2\beta + 2\theta_d + 2\gamma)$
$\rightarrow a_{SL}$

$\begin{align*}
\begin{cases}
 r_d^2 = 0.92^{+0.73}_{-0.23} \\
 2\theta_d = -5.3^{+3.2}_{-8.8} \ deg
\end{cases}
\end{align*}$

(Uncertainties are given at 1σ)

The NP solution at $\pi/2$ has 1-CL < 3%.
Influence of non-pert. hadronic parameters in Δm_d

\[\Delta m_d = \frac{G_F^2}{6\pi^2} \eta_B m_{B_d} f_{B_d} B_d m_W^2 S(x_t) |V_{td} V_{tb}^*| r_d^2 \]

- As far as the lattice uncertainties are considered, f_{B_d} is the relevant parameter to improve.
- A factor 2 has important impact. A factor 10 is not decisive with the current experimental uncertainties of the observables.
Alternative parametrization of NP in $|\Delta B| = 2$

Isolate the pure NP contribution from (SM+NP) terms:

$$M_{12} = M_{12,SM} (1 + h_d e^{2i\sigma_d})$$

Agashe et al. hep-ph/0509117

$$\Delta m_d = |1 + h_d e^{2i\sigma_d}| \Delta m_d^{SM}$$

$$2\beta \rightarrow 2\beta + Arg(1 + h_d e^{2i\sigma_d})$$

$$a_{SL} = \text{Im}(\frac{\Gamma_{12}^{SM}}{M_{12}^{SM} (1 + h_d e^{2i\sigma_d})})$$

Without γ, α and a_{SL} constraints

With γ, α and a_{SL} constraints

$h_d = 0.08^{+0.65}_{-0.06}$
Allowing in addition NP in K-K mixing (I)

$$r_K = \frac{\text{Im} \left< K^0 | H^{\text{full eff}} | \bar{K}^0 \right>}{\text{Im} \left< K^0 | H^{\text{SM eff}} | \bar{K}^0 \right>}$$

$\rightarrow |V_{ub}|/|V_{cb}|$

$\rightarrow r_d^2 \Delta m_d$

$\rightarrow \sin(2\beta + 2\theta_d)$

$\rightarrow \cos(2\beta + 2\theta_d)$

$\rightarrow \gamma \quad (ADS + GLW + GGSZ)$

$\rightarrow \alpha \sin(2\beta + 2\theta_d + 2\gamma)$

$\rightarrow a_{SL}$

$\rightarrow r_K \epsilon_K$

(1σ)

\[
\begin{align*}
 r_d^2 &= 0.92^{+0.76}_{-0.25} \\
 2\theta_d &= -4.8^{+4.1}_{-9.1} \text{ deg} \\
 r_K &= 1.09^{+0.45}_{-0.46}
\end{align*}
\]
Allowing in addition NP in K-K mixing (II)

The NP region at $2\theta_d = \pi/2$ in B_d mixing implies also NP in K mixing corresponding to $\epsilon_K < 0$.
The angle governing the mixing in the B_s system is already known to good precision in the SM

\[\sin(2\beta_s) = 0.0363 \pm 0.0025 \]

\[\beta_s \approx \lambda^2 \eta + o(\lambda^4) \] can be extracted from the global Standard Model fit.

\[\beta_s = \text{arg}\left(-\frac{V_{cb}V_{cs}^*}{V_{tb}V_{ts}^*} \right) \]
NP in B_s mixing ($\Delta B=2$ and $\Delta S=2$) is accounted for model-independently through two additional parameters, akin to the B_d system:

$$r_s^2 e^{i2\theta_s} = \frac{\left\langle B_s^0 | H^{\text{full}}_{\text{eff}} | B_s^0 \right\rangle}{\left\langle B_s^0 | H^{\text{SM}}_{\text{eff}} | B_s^0 \right\rangle}$$

- LHCb expected sensitivities correspond to 2 fb^{-1}
 (See Talks of O. Schneider & L. Fernandez):

 $\rightarrow \Delta m_s = 20.000 \pm 0.011 \text{ ps}^{-1}$ from $B_s \rightarrow D_s \pi$
 $\rightarrow A_{mix} = \sin(2\beta_s) = 0.036 \pm 0.028$

 from combined $B_s \rightarrow J / \Psi \Phi$, $B_s \rightarrow J / \Psi \eta$ and $B_s \rightarrow \eta_c \phi$
 $\rightarrow \gamma - 2\beta_s = 57 \pm 14 \text{ deg}$ from $B_s \rightarrow D_s K$
 $\rightarrow \gamma = 59 \pm 8 \text{ deg}$ from $B_d \rightarrow D^{(*)} K$

$\rightarrow r_s^2 \Delta m_s$
$\rightarrow \sin(2\beta_s + 2\theta_s)$
$\rightarrow \sin(2\beta_s + 2\theta_s - \gamma)$
\[
\begin{align*}
&\rightarrow |V_{ub}|/|V_{cb}| \\
&\rightarrow r_d^2 \Delta m_d \\
&\rightarrow \sin(2\beta + 2\theta_d) \\
&\rightarrow \cos(2\beta + 2\theta_d) \\
&\rightarrow \gamma \ (ADS + GLW + GGSZ) \\
&\quad \oplus \text{Adding LHCb sensitivity} \\
&\rightarrow \alpha \ \sin(2\beta + 2\theta_d + 2\gamma) \\
&\rightarrow a_{SL} \\
&\rightarrow r_K^2 \epsilon_K \\
&\rightarrow r_s^2 \Delta m_s \\
&\rightarrow \sin(2\beta_s + 2\theta_s) \\
&\rightarrow \sin(2\beta_s + 2\theta_s - \gamma)
\end{align*}
\]

\[r_s^2 = 1.01^{+0.11}_{-0.09}\]

\[2\theta_s = 0.1^{+1.6}_{-1.7} \text{ deg}\]
CONCLUSIONS

• B_d mixing: which room for new physics? ... Not much.

• K mixing: the only constraint is from ϵ_K ⇔ under constrained pb as far as specific NP phase & modulus are considered.

• B_s mixing: LHCb will immediately see NP if $O(10^\circ)$.

\[\theta_s = 10^\circ \]
Main inputs to the fit

\[|V_{ub}| \text{ (average)} = (4.15 \pm 0.12 \pm 0.23) \times 10^{-3} \]
\[|V_{cb}| \text{ (incl)} = (41.58 \pm 0.45 \pm 0.58) \times 10^{-3} \]
\[|V_{cb}| \text{ (excl)} = (41.4 \pm 2.1) \times 10^{-3} \]
\[|\varepsilon_K| = (2.282 \pm 0.017) \times 10^{-3} \]
\[\Delta m_d = (0.509 \pm 0.004) \text{ ps}^{-1} \]
\[\sin(2\beta) = 0.687 \pm 0.032 \]
\[\Delta m_K = (3.490 \pm 0.006) \times 10^{-12} \text{ MeV} \]
\[B_K = 0.79 \pm 0.04 \pm 0.09 \]
\[m_{K^+} = (493.677 \pm 0.016) \text{ MeV} \]
\[f_K = 159.8 \pm 1.5 \text{ MeV} \]
\[\eta_{tt} = 0.5765 \pm 0.0065 \]
\[\eta_{ct} = 0.47 \pm 0.04 \]
\[\eta_{B(MS)} = 0.551 \pm 0.007 \]
\[f_{B_d}/B_d = (223 \pm 33 \pm 12) \text{ MeV} \]
\[a_{SL} = -0.0026 \pm 0.0067 \]

\[S^{+-}_{\pi\pi} = -0.50 \pm 0.12 \]
\[C^{+-}_{\pi\pi} = -0.37 \pm 0.10 \]
\[C^{00}_{\pi\pi} = -0.28 \pm 0.39 \]
\[B_{\pi\pi, \text{all charge}} \] Inputs to isospin analysis
\[S^{-\rho_{\rho L}} = -0.22 \pm 0.22 \]
\[C^{-\rho_{\rho L}} = -0.02 \pm 0.17 \]
\[B_{\rho_{\rho L, \text{all charge}}} \] Inputs to isospin analysis
\[B \to \rho \pi \to 3\pi \] Time dependent Dalitz analysis

\[B \to D^{(*)} K^{(*)(-)} \] Inputs to GLW, ADS & GGSZ analysis
II

γ measurements

![Diagram showing measurements]

Full frequentist treatment on MC basis

- D(*)K(*) GLW + ADS
- D(*)K(*) GGSZ
- Combined

CKM fit
Adding $B \rightarrow \tau \nu$

$BR(B^+ \rightarrow \tau^+\nu) = \frac{G_F^2 m_B \tau_B}{8\pi} m_\tau^2 \left(1 - \frac{m_\tau^2}{m_B^2}\right)^2 f_B^2 |V_{ub}|^2$

With Δm_d, remove the f_B dependence

- Powerful in the future for constraining the SM region.
- Potential annihilation by means of H^+ prevents for considering this input in the analysis.