Rare Dimuon Decays at ATLAS

N.Nikitine for ATLAS B-Physics Group

Workshop "Flavour in the Era of the LHC" CERN, November 7-10 2005

Introduction

Physics: $b \rightarrow d$, s transitions (FCNC) are forbidden at the tree level in SM and occur at the lowest order through one-loop-diagrams "penguin" and "box".

Main points for study:

a) The good test of SM and it's possible extensions;

c) Determination of the $|V_{td}|$ and $|V_{ts}|$;

d) Some of rare decays can produce the BG to other rare decays (for example: $B^+ \rightarrow \mu^+ \mu^- \ell^+ \nu_{\ell}$ as BG to $B^0_{d,s} \rightarrow \mu^+ \mu^-$).

Which new <u>rare B-decays</u> measurements can be performed by LHC in comparision with B-factories?

- a) The rare decays of $\mathbb{B}_{s}^{0} \text{meson} (\mathbb{B}_{s}^{0} \rightarrow \varphi \gamma, \mathbb{B}_{s}^{0} \rightarrow \varphi \mu^{+} \mu^{-}, \alpha n d \mathbb{B}_{s}^{0} \rightarrow \mu^{+} \mu^{-} (\gamma))$ and $\Lambda_{b} \text{baryon} (\Lambda_{b} \rightarrow \Lambda \mu^{+} \mu^{-}, \Lambda_{b} \rightarrow \Lambda^{s} \gamma);$
- b) Differential distributions for rare semileptonic Bmeson decays (dimuon mass spectra, forwardbackward asymmetries) with sufficient accuracy for distinguishing SM and it's extentions;
- c) Branching fractions of extremely rare decays $B^{0}_{d,s} \rightarrow \mu^{+} \mu^{-}$ and $B^{0}_{d,s} \rightarrow \mu^{+} \mu^{-} \gamma$ decays have good sensitivity for some SM extensions.

ATLAS trigger strategy for di-muonic B-events

ATLAS LVL1, Trigger rates at initial luminosity (0.5-2.0)×10³³cm⁻²s⁻¹

1) The study of two-muons rare decays $B_{s}^{0} \rightarrow \mu^{+} \mu^{-}$, $B_{d,s}^{0} \rightarrow (K^{*}, \phi) \mu^{+} \mu^{-}$ based on LVL1 di-muon trigger (<u>can</u> <u>be continued at nominal</u> 10³⁴ cm⁻²s⁻¹).

2) The study of rare decays: $B_{d}^{0} \rightarrow \pi^{0}\mu^{+}\mu^{-}$ and $B_{s}^{0} \rightarrow \mu^{+}\mu^{-}\gamma$ based on LVL1 di-muon trigger and single muon LVL1 (μ 6) with photons reconstruction in EM CALO.

$\begin{array}{c} B^{0}_{\ d,s} \xrightarrow{} \mu^{+} \mu^{-} decays \\ at ATLAS \end{array}$

Br_{SM} ~ 10⁻⁹ – 10⁻¹⁰

All experimental limits are 100 times higher, than SM theoretical predictions.

Motivation for $B^0_{d,s} \rightarrow \mu^+ \mu^- study$

th) Clear theoretical picture for SM and it's extensions for branching ratio predictions.

- th') Good potential sensitivity for the SUSY (for example: in MSSM Br ~ $\tan^6\beta$ / M^2_H).
- **ex) Only LHC <u>can measure</u>** branching ratios of the rare muonic decays in SM.
- ex') ATLAS (and CMS) will have some advantages over LHCb studying rare muonic channels at nominal (10³⁴) luminosity.
- ex'') Simple signature for experimental search.

$B^{0}_{d,s} \rightarrow \mu^{+}\mu^{-}$ simulation at ATLAS

1) 1998-1999-years simulation TDR ATLAS Detector layout Full detector simulation and reconstruction for initial and nominal LHC luminosity, signal + combinatorical background

After 3 year LHC at L=10³³ cm⁻²s⁻¹ (30 fb⁻¹)

 B_d^0 : 4 signal ev., B_s^0 : 27 signal ev., 93 BG ev. common to both After 1 year LHC at L=10³⁴ cm⁻²s⁻¹ (100 fb⁻¹)

 B_d^0 : 14 signal ev., B_s^0 : 92 signal ev., 660 BG ev. common to both

 $B^0_{\ d} \rightarrow \mu^+ \mu^-$: 3*10⁻¹⁰ upper limit at CL 95%

 $B_{s}^{0} \rightarrow \mu^{+}\mu^{-}$: 2.8σ at 3year@10³³ and combining with 1year@10³⁴ - 4.3σ

CERN/LHCC/99-15, ATLAS TDR 15, 25 MAY 1999;

"1999 Workshop on SM Physics (and more) at the LHC", CERN Yellow Report, CERN-2000-004.

2) 2002-2005 simulations with Final ATLAS Detector layout and with new software

DC1: ATLAS B-Physics Group, ATL-PHYS-2005-002 DC2+ Rome Production: ATLAS Physics workshop (Rome),

http://agenda.cern.ch/fullAgenda.php?ida=a044738

ATLAS sensitivity on $Br(B^0_s \rightarrow \mu^+ \mu^-)$ with Final detector layout

Integral LHC Luminosity	BG ev. $p_{T}(\mu) > 6 \text{ GeV},$ $\Delta R_{\mu\mu} < 0.9$	SES	Expected Signal ev. after cuts	Expected BG ev. after cuts	ATLAS upper limit at 90% CL	CDF&D0 best upper limit at 90% CL
100 pb ⁻¹	6.0×10 ⁴	2.7×10 ⁻⁸	~ 0	~ 0.2	6.4×10 ⁻⁸	
10 fb ⁻¹	6.0×10 ⁶	2.7×10 ⁻¹⁰	~ 7	~ 20	7.0×10 ⁻⁹	1.2×10 -7
30 fb⁻¹	1.8×10 ⁷	0.9×10 ⁻¹⁰	~ 21	~ 60	6.6×10-9	

1) We get the cross section of \mathbf{B}_{s}^{0} multiplied by acceptance of $\mathbf{B}_{s}^{0} \rightarrow \mu^{+}\mu^{-}$ decay with $p_{T}(\mu) > 6$ GeV and $|\eta(\mu)| < 2.5$ from Rome PYTHIA samples : $\sigma(\mathbf{B}_{s}) * \alpha = 0.42 \ \mu b$;

- 2) We get the background ($b\bar{b} \rightarrow \mu\mu X$) cross section $\sigma(BG)$ with $pT(\mu) > 6$ GeV and $|\eta(\mu)| < 2.5$ from Rome PYTHIA samples: $\sigma(BG) = 600$ pb;
- 3) SES Single event sensitivity for $\mathbf{B}_{s}^{0} \rightarrow \mu^{+}\mu^{-}$ SES = [(1 B_s $\rightarrow \mu 6\mu 6$ event)/(total number of BG events)]×[$\sigma(BG)/(\sigma(B_{s})^{*}\alpha)^{*} \varepsilon_{\mu}^{2}$];

4) For ATLAS upper limit calculation we have used CDF code http://www-cdf.fnal.gov/physics/statistics/statistics_software.html.

BG for $B^0_{d,s} \rightarrow \mu^+\mu^-$ decays

In order to find physics beyond SM in rare muonic decays, we need to know <u>all possible SM BG</u>.

- 1. In ATLAS conditions the largest BG is coming from bb (bbbb, bbcc)→µµX processes, with muons originating mainly from semileptonic b(c) decays.
- 2. Other <u>important BG</u> can be produced by <u>decays with</u> <u>small branching ratios</u> (rare decays!) or <u>exotic decays</u>, which are NOT included in standard MC-generators (PYTHIA, for example). These processes may be potentially dangerous as they <u>have signatures very</u> <u>similar</u> to $B \rightarrow \mu\mu$ signal in area of their phase space.

$B^{0 \pm} \rightarrow \pi^{0 \pm} \mu^{+} \mu^{-}$ as BG for $B^{0}_{d,s} \rightarrow \mu^{+} \mu^{-}$

- 1. The branching ratios of $B^{0 \pm} \rightarrow \pi^{0 \pm} \mu^{+} \mu^{-}$ decays approximatly equal to 10⁻⁸ and are larger than branching ratios of rare leptonic decays $B^{0}_{d,s} \rightarrow \mu^{+} \mu^{-}$.
- **2.** The background would come from **soft pions** escaping the identification and leaving the invariant dimuon mass

 $\mathbf{M}_{\mu\mu} = \mathbf{M}_{\mathbf{B}} - \mathbf{M}_{\pi}.$

within the limits of $B \rightarrow \mu \mu$ mass resolution ($\sigma \sim 80 \text{ MeV}$).

- **3.** Detailed detector simulation will allow to determine strategies to further reduce the contributions of these decays.
- 4. At first step (particle level study) there were revealed basic problems of $B^{0} \pm \rightarrow \pi^{0} \pm \mu^{+}\mu^{-}$ as a background to $B^{0}_{d,s} \rightarrow \mu^{+}\mu^{-}$ (see next slides). 10

 $B_{d}^{0} \rightarrow \pi^{0} \mu^{+} \mu^{-}$ as BG for $B_{d,s}^{0} \rightarrow \mu^{+} \mu^{-}$

 $|\eta(\mu)| < 2.5, p_T(\mu) > 6 \text{ GeV}, \pi^0 \to \gamma \gamma.$ The particle level simulation of $B^0_d \to \pi^0 \mu^+ \mu^-$ for SM (no cuts selecting $\mu\mu$ -pairs pointing to primary vertex applied).

$\begin{array}{c} B^+ \to \mu^+ \mu^- \,\ell^+ v_\ell \,\,and \,\,B_c \to \mu^+ \mu^- \,\ell^+ v_\ell \\ as \,\,BG \,\,for \,\,B^0_{d,s} \to \mu^+ \mu^- \end{array}$

Roughly: the branching ratio of $\mathbf{B}^+ \to \mu^+ \mu^- \ell^+ \mathbf{v}_{\ell}$ is $\mathbf{Br}(\mathbf{B}^+ \to \mu^+ \mu^- \ell^+ \mathbf{v}_{\ell}) \approx 5^* 10^{-6},$ the branching ratio of $\mathbf{B}_c \to \mu^+ \mu^- \ell^+ \mathbf{v}_{\ell}$ is $\mathbf{Br}(\mathbf{B}_c \to \mu^+ \mu^- \ell^+ \mathbf{v}_{\ell}) \approx 8^* 10^{-5}.$

Because of the fact, that $B_c - meson's$ cross section is 400 times smaller than cross section of B⁺ at LHC energy, this decay channels gives approximately equal BG for $B^0_{d,s} \rightarrow \mu^+\mu^-$. **This BG seems to be very significant** comparing with BG from $B^0 \pm \rightarrow \pi^0 \pm \mu^+\mu^-$ decays (see particle level example for decays B⁺ $\rightarrow \mu^+\mu^- \ell^+ v_\ell$ on the next slide). 12

For muons in $M_{\mu\mu}$: $|\eta(\mu)| < 2.5$, $p_T(\mu) > 5$ (or 6) GeV. The particle level phase space simulation of $B_d^0 \rightarrow \mu^+ \mu^- \ell^+ v_{\ell}$ (no cuts selecting $\mu\mu$ -pairs pointing to primary vertex applied yet!).

Rare semileptonic b-decays at ATLAS

Br_{SM} ~ 10⁻⁶ – 10⁻⁷

Motivation for study of $B^0_{d(s)} \rightarrow K^*(\phi)\mu+\mu^-$

th) Good agreement between different nonperturbative theoretical models;

- th') Branching ratios and differential distributions (dimuon-mass spectra, A_{FB}) are sensitive to the SM extentions;
- **ex)** It is **possible to study** the rare semileptonic decays at initial LHC luminosity;

ex') ATLAS will have enough statistics at initial luminosity for precise measurement of differential distributions.

Expected ATLAS statistics at 30 fb⁻¹

Decay Cannels	Reconstructed Signal events	BG after all cuts
$B^0_d \rightarrow K^* \mu^+ \mu^-$	3000	< 3000
$B_{s}^{0} \rightarrow \phi \mu^{+} \mu^{-}$	900	< 3000
$\Lambda_b \rightarrow \Lambda \ \mu^+ \ \mu^-$	1500	in progress

Full detector simulation and reconstruction for <u>final</u> <u>ATLAS Detector layout with new software</u> at initial LHC luminosity: signal and <u>combinatorical background</u> (in progress). Trigger efficiencies included.

CONCLUSION

- 1. Already during the first year of LHC, with luminosity just 100 pb⁻¹ ATLAS can exceed best CDF and D0 current upper limit on branching ratios of $B_s^0 \rightarrow \mu^+\mu^-$ decay.
- 2. After 30 fb⁻¹ (equivalent to 3 years at initial luminosity) ATLAS will be able to achieve sensitivity at level of SM predictions for $B_s^0 \rightarrow \mu^+ \mu^-$.
- **3.** Under the same conditions ATLAS will have enough statistics for precise measurement of differential distributions of rare semileptonic decays.
- 4. Program of ATLAS rare muonic decays measurements can be continued at nominal LHC luminosity 10³⁴ cm⁻² s⁻¹!

Appendix

The basic theoretical description -I

Effective Hamiltonian for $b \rightarrow d$,s transition:

 $H_{eff}(b \rightarrow q) \sim G_F V_{tq}^* V_{tb} \sum C_i(\mu) O_i(\mu)$, includes the lowest EW-contributions and perturbative QCD corrections for Wilson coefficients $C_i(\mu)$. μ - scale parameter ~ 5 GeV : separates SD (perturbative) and LD (nonperturbative) contributions of the strong interactions.

SM NLO: A.Buras, M.Munz, *PRD52*, *p.182*, *1995* SM NNLO: C.Bobeth et al., *JHEP 0404*, *071*, *2004* MSSM NNLO: C.Bobeth et al., *NPB713*, *p522*, *2005*

The basic theoretical description -II

O_i (μ) – set of the basic operators (specific for each model: SM, MSSM, LR and others);

LD (nonperturbative) contribution of the strong interactions are contained in the hadronic matrix elements:

 $\langle \text{final hadronic states} | O_i(\mu) | \text{initial hadronic states} \rangle$

and are described in the terms of relativistic invariant function - transition formfactors.

Need the nonperturbative methods (SR, QM, Lat).

SM Theoretical Branching Ratios Predictions

$B^0_{\ s} \rightarrow \mu^+ \mu^-$	Br (B ⁰ _s \rightarrow μ^+ μ^-) = 3.5 * 10 ⁻⁹ at $ V_{ts}^* V_{tb} ^2 = 2.2 * 10-3$	
$B^0_{\ d} \rightarrow \mu^+ \mu^-$	Br (B ⁰ _d $\rightarrow \mu^+ \mu^-$) = 0.9 * 10⁻¹⁰ at $ V_{td}^* V_{tb} ^2 = 6.9 * 10^{-5}$	
$B^0_d \rightarrow K^* \mu^+ \mu^-$	Br ($B_d^0 \to K^* \mu^+ \mu^-$) = 1.3 * 10 ⁻⁶ from PDG'04	
$B^0_{\ s} \rightarrow \phi \ \mu^+ \ \mu^-$	Br ($\mathbf{B}^0_{s} \rightarrow \varphi \ \mu^+ \ \mu^-$) / Br ($\mathbf{B}^0_{d} \rightarrow \mathbf{K}^* \ \mu^+ \ \mu^-$) = 0.8 D.Melikhov, N.Nikitin, S.Simula, PRD57, 6814, 1998	
	D.Melikhov, B.Stech, PRD62, 014006, 2000	
	A.Buras, M.Munz, PRD52, 186, 1995	
$B^0_{d} \rightarrow \pi^0 \mu^+ \mu^-$	Br (B ⁰ _d $\rightarrow \pi^0 \mu^+ \mu^-$) = 2.0 * 10⁻⁸ at $ V^*_{td} V_{tb} ^2 = 6.9 * 10^{-5}$	
${B^{\pm}}_{d} ightarrow \pi^{\pm} \mu^{+} \mu^{-}$	$\mathbf{Br}(\mathbf{B}_{d}^{\pm} \to \pi^{\pm}\mu^{+} \mu^{-}) = \mathbf{Br}(\mathbf{B}_{d}^{0} \to \pi^{0}\mu^{+} \mu^{-})$	
$B^0_{s} \rightarrow \mu^+ \mu^- \gamma$	Br (B ⁰ _s $\rightarrow \mu^+ \mu^- \gamma$) = 1.9 * 10⁻⁸ at $ \mathbf{V}^*_{ts} \mathbf{V}_{tb} ^2 = 2.2 * 10^{-3}$	
5	D.Melikhov, N.Nikitin, PRD70, 114028, 2004	
	F.Kruger, D.Melikhov, PRD67,034002, 2003	
	A.Buras, M.Munz, PRD52, 186, 1995	
$\Lambda_{\rm h} \rightarrow \Lambda \ \mu^+ \ \mu^-$	$Br(\Lambda_b \to \Lambda \mu^+ \mu^-) = 2.0 * 10^{-6}$	
	C-H.Chen, C.Q.Geng, PRD64, 074001, 2001	
	T.M.Aliev et.al., NPB649, p. 168-188, 2003	A4

"Rome production": 2005 – Data Samples

Generation (with theoretical matrix elements), full simulation, digitization and reconstruction with 9.0.4 and 10.0.1 software releases, analysis of AOD in 10.0.1.

Signal channels:

 $B \rightarrow \mu 6 \mu 6$ Rome production. 5 kEv in analysis (AOD)

 $B \rightarrow K^{*0}\mu 6\mu 4$ Private (evgen-simul-digi-reco) 30 kEv (AOD)

 $B \rightarrow \phi \mu 6 \mu 4$ Private (evgen-simul-digi-reco) 12 kEv (AOD)

 $\Lambda_b \rightarrow \Lambda \mu 5 \mu 5$ Private (evgen-simul-digi-reco) ~50 kEv (AOD) Background samples:

bb \rightarrow $\mu 6\mu 6X$ ~50kEV included cut on M($\mu\mu$) ~ M(B⁰_s) **bb** \rightarrow $\mu 4\mu 4X$ ~23kEV for B-decays and ~31kEv for Λ_b -decays

Upper limits for rare muonic decays

<u>CDF Run 2</u>: Br($B_s \rightarrow \mu\mu$) < 2.0 x 10⁻⁷ @ 95% CL (hep-ex/0508036) **D0 Run 2:** Br($B_s \rightarrow \mu\mu$) < 3.7 x 10⁻⁷ @ 95% CL (D0-Note 4733-Conf, Preliminary) **D0 Run 2:** Br($B_s \rightarrow \mu\mu$) < 5.0 x 10⁻⁷ @ 95% CL (Phys. Rev. Letters 94, 071802 (2005)) **CDF Run 2**: Br($B_s \rightarrow \mu\mu$) < 7.5 x 10⁻⁷ @ 95% CL (Phys. Rev. Letters 93, 032001 2004) **<u>CDF Run 2</u>**: Br($B_d \rightarrow \mu\mu$) < 3.9 x 10⁻⁸ @ 90% CL (hep-ex/0508036) Br($B_d \rightarrow \mu \mu$) < 8.3 x 10⁻⁸ @ 90% CL **BaBar**: (hep-ex/0408096) **CDF Run 2**: Br($B_d \rightarrow \mu\mu$) < 1.5 x 10⁻⁷ @ 90% CL (Phys. Rev. Letters 93, 032001 2004) **Belle**: Br($B_d \rightarrow \mu \mu$) < 1.6 x 10⁻⁷ @ 90% CL (Phys. Rev. D 68, 111101 (R) (2003))

All experimental limits are <u>100 times higher</u>, than SM theoretical predictions.

B⁰_s → $\mu^+\mu^-$ decays in ATLAS: Rome production at 2005 year Signal, BG and efficiencies of selection cuts (10 fb⁻¹)

Cuts	BG: <i>bt</i>	$\bar{b} \rightarrow \mu \mu X$	B ⁰ _s - S	Signal
Vertexing procedure	CTMVFT	VKalVrt	CTMVFT	VKalVrt
$p_{\rm T}(\mu) > 6 {\rm Gev}, \Delta R_{\mu\mu} < 0.9$	6.0 × 1	0 ⁶ events	50 e	vents
$M(\mu\mu) = M_B^{+140}_{-70} MeV$	2×10-2		0.77	
Isolation cut: no ch.tracks	5×10-2	5×10-2	0.36	0.36
\mathbf{p}_{T} >0.8 GeV in cone with $\mathbf{\theta}$ < 15°				
$\sigma < 90 \mu m$, $L_{xy} / \sigma > 15$, $\alpha < 1^{\circ}$	2.8×10 ⁻³		0.2	
$L_{xy}/\sigma > 11, \chi^2 < 15$		< 0.7 ×10 ⁻⁴		0.4
Number of events after cuts	15±10	20±20	3	7

B-meson hadronic decays as BG for $B^0_{d,s} \rightarrow \mu^+ \mu^-$

Another important BG for $\mathbb{B}^{0}_{d,s} \rightarrow \mu^{+}\mu^{-}$ is **two-body hadronic decays** of B-mesons, when one (or both) final hadrons have short lifetime, and decayed inside ATLAS Inner Detector with high probability.

For example:

 $Br(B^{0}_{d} \rightarrow (D^{+} \rightarrow \mu^{+} X_{s})(D^{-} \rightarrow \mu^{-} X_{s}) \text{ in ID}) \approx 10^{-6},$ $Br(B^{0}_{d} \rightarrow (D^{+} \rightarrow \mu^{+} X_{d})(D^{-} \rightarrow \mu^{-} X_{d}) \text{ in ID}) \approx 10^{-8}.$ This decay and similar decays $B^{0}_{d} \rightarrow K^{+} D^{-}, B^{0}_{s} \rightarrow K^{+} D^{-}_{s}$ and $B^{0}_{s} \rightarrow D^{*+}_{s} D^{*-}_{s}$ are <u>not included in PYTHIA 6.x</u>!

 $B_d^0 \rightarrow \pi^0 \mu^+ \mu^- as BG to B_{d,s}^0$

Impact of Trigger Cuts for $\Lambda_b \to \Lambda \ \mu^+ \ \mu^-$

• expected number of triggered events for 30 fb⁻¹

$\Lambda_{ m b}$ - production	$\sigma_{bb} = 500 \mu b, Br(b \rightarrow \Lambda_b) = 0.071$	1.1x10 ¹²
$\Lambda_{ m b}$ rare decay	$Br(\Lambda_b \rightarrow \Lambda \mu \mu) = 2x10^{-6}, Br(\Lambda \rightarrow p\pi) = 0.64$	1.400.000
Di-muon LVL1 cuts	$p_{\rm T} > 6/4 {\rm ~GeV}, \eta < 2.5$	26.000
Hadron cuts	p _T >0.5 GeV, η < 2.5	14.000

 trigger cuts prefers higher di-muon invariant masses and slightly lowers absolute value of A_{FB} in region of lower di-muon masses

