# Hadronic Vacuum Polarization Contributions <br> $$
\text { to }(g-2)_{\mu}
$$ 

Gilberto Colangelo
C

CERN, November 9, 2005

## Outline

Introduction
Status of $a_{\mu}$ as of summer 2004

New data - Summer 2005

Can theory help?

Summary

## Status of $a_{\mu}$ as of summer 2004



J = Jegerlehner, DEHZ = Davier, Eidelman, Höcker, Zhang
Figure from Höcker ICHEP (04)
HMNT = Hagiwara, Martin, Nomura, Teubner, TY = de Tróconiz, Ynduráin

## Status of $a_{\mu}$ as of summer 2004

Breakdown of $a_{\mu}^{\text {hvp }}$ in contributions of different energy regions


Figure from F. Jegerlehner

$$
a_{\mu}^{\mathrm{hvp}}=\left(\frac{\alpha m_{\mu}}{3 \pi}\right)^{2} \int_{4 m_{\ell}^{2}}^{\infty} d s \frac{\hat{K}(s)}{s^{2}} R_{h}(s)
$$

The region below 1 GeV is the most important

## Status of $a_{\mu}$ as of summer 2004

- isospin relation among $e^{+} e^{-}$and $\tau$ not fully understood $\Rightarrow$ use $e^{+} e^{-}$data


## Status of $a_{\mu}$ as of summer 2004

- isospin relation among $e^{+} e^{-}$and $\tau$ not fully understood $\Rightarrow$ use $e^{+} e^{-}$data
- the discrepancy between theory and experiment is of about 2 to $3 \sigma$ 's (depending on the evaluation of $a_{\mu}^{\text {hvp }}$ )


## Status of $a_{\mu}$ as of summer 2004

- isospin relation among $e^{+} e^{-}$and $\tau$ not fully understood $\Rightarrow$ use $e^{+} e^{-}$data
- the discrepancy between theory and experiment is of about 2 to $3 \sigma$ 's (depending on the evaluation of $a_{\mu}^{\text {hvp }}$ )
- the discrepancy is about $3 \%$ of $a_{\mu}^{\text {hvp }}$


## Status of $a_{\mu}$ as of summer 2004

- isospin relation among $e^{+} e^{-}$and $\tau$ not fully understood $\Rightarrow$ use $e^{+} e^{-}$data
- the discrepancy between theory and experiment is of about 2 to $3 \sigma$ 's (depending on the evaluation of $a_{\mu}^{\text {hvp }}$ )
- the discrepancy is about $3 \%$ of $a_{\mu}^{\text {hvp }}$
- the current experimental error is about $0.9 \%$ of $a_{\mu}^{\text {hvp }}$


## Status of $a_{\mu}$ as of summer 2004

- isospin relation among $e^{+} e^{-}$and $\tau$ not fully understood $\Rightarrow$ use $e^{+} e^{-}$data
- the discrepancy between theory and experiment is of about 2 to $3 \sigma$ 's (depending on the evaluation of $a_{\mu}^{\text {hvp }}$ )
- the discrepancy is about $3 \%$ of $a_{\mu}^{\text {hvp }}$
- the current experimental error is about $0.9 \%$ of $a_{\mu}^{\text {hvp }}$
- the challenge is the evaluation of $a_{\mu}^{\text {hvp }}$ to $1 \%$ or better


## Status of $a_{\mu}$ as of summer 2004

- isospin relation among $e^{+} e^{-}$and $\tau$ not fully understood $\Rightarrow$ use $e^{+} e^{-}$data
- the discrepancy between theory and experiment is of about 2 to $3 \sigma$ 's (depending on the evaluation of $a_{\mu}^{\text {hvp }}$ )
- the discrepancy is about $3 \%$ of $a_{\mu}^{\text {hvp }}$
- the current experimental error is about $0.9 \%$ of $a_{\mu}^{\text {hvp }}$
- the challenge is the evaluation of $a_{\mu}^{\text {hvp }}$ to $1 \%$ or better
- the evaluation of the hadronic contribution at order $\alpha^{3}$ is also nontrivial (e.g. hadronic light-by-light) but its size is of the order of the current experimental error


## Comparison KLOE-CMD-2

- Until summer 2004, $e^{+} e^{-}$data in the $\rho$-region were dominated by CMD-2


## Comparison KLOE-CMD-2

- Until summer 2004, $e^{+} e^{-}$data in the $\rho$-region were dominated by CMD-2
- Summer 04: the KLOE data "confirmed the CMD-2 data"


## Comparison KLOE-CMD-2

- Until summer 2004, $e^{+} e^{-}$data in the $\rho$-region were dominated by CMD-2
- Summer 04: the KLOE data "confirmed the CMD-2 data"
- Conclusion: use only $e^{+} e^{-}$for $a_{\mu}$. The discrepancy with $\tau$ data (though disturbing) can be ignored as far as $a_{\mu}$ is concerned
cf. Höcker, ICHEP 04


## Comparison KLOE-CMD-2

- Until summer 2004, $e^{+} e^{-}$data in the $\rho$-region were dominated by CMD-2
- Summer 04: the KLOE data "confirmed the CMD-2 data"
- Conclusion: use only $e^{+} e^{-}$for $a_{\mu}$. The discrepancy with $\tau$ data (though disturbing) can be ignored as far as $a_{\mu}$ is concerned
cf. Höcker, ICHEP 04
- However, while the integrals evaluated with CMD-2 or KLOE data agree, the two data sets disagree with each other locally


## Comparison KLOE-CMD-2



## "Harbinger of new physics"?

No error rescaling



Errors rescaled according to PDG

| SM: | $\chi^{2} /$ d.o.f $=21.0 / 16$ |
| :--- | :--- |
| MSSM: | $\chi^{2} /$ d.o.f $=10.1 / 12$ |
| CMSSM: | $\chi^{2} /$ d.o.f $=17.1 / 16$ |



Figure from de Boer and Sander PLB (04)

## "Harbinger of new physics"?

- the SUSY corrections are of the right size to explain the (possible) discrepancy between theory and experiment


## "Harbinger of new physics"?

- the SUSY corrections are of the right size to explain the (possible) discrepancy between theory and experiment
- the sign of the (possible) discrepancy implies $\mu>0$ this is also favoured by other data $(b \rightarrow s \gamma$ )


## "Harbinger of new physics"?

- the SUSY corrections are of the right size to explain the (possible) discrepancy between theory and experiment
- the sign of the (possible) discrepancy implies $\mu>0$ this is also favoured by other data ( $b \rightarrow s \gamma$ )
- $a_{\mu}$ plays an important role among other precision observables as a test of the SM or estensions thereof


## "Harbinger of new physics"?

- the SUSY corrections are of the right size to explain the (possible) discrepancy between theory and experiment
- the sign of the (possible) discrepancy implies $\mu>0$ this is also favoured by other data $(b \rightarrow s \gamma$ )
- $a_{\mu}$ plays an important role among other precision observables as a test of the SM or estensions thereof
- if the discrepancy will disappear in the future $a_{\mu}$ will still provide strong constraints on the MSSM parameter space


## "Harbinger of new physics"?




Figure from Heinemeyer, Stöckinger and Weiglein (04)

## News, Summer $2005-\tau$-data




## News, Summer 2005 - $\tau$-data



Figures from ALEPH Coll. hep-ph/0506072

## News, Summer $2005-e^{+} e^{-}$-data

New data from the SND Coll. (Novosibirsk)


Figure from SND Coll. hep-ph/0506076

## News, Summer $2005-e^{+} e^{-}$-data

New data from the SND Coll. (Novosibirsk)


## News, Summer $2005-e^{+} e^{-}$-data

New data from the SND Coll. (Novosibirsk)


## News, Summer $2005-e^{+} e^{-}$-data

New data from the CMD-2 Coll. (Novosibirsk)


Talk by Logashenko, HEP Conference, Lisbon 2005

## News, Summer $2005-e^{+} e^{-}$-data




Talk by Logashenko, HEP Conference, Lisbon 2005

## News, Summer 2005 - $e^{+} e^{-}$-data



Very preliminary evaluation of $a_{\mu}^{\text {hyv }}$ from the various data sets, as presented by Logashenko (CMD-2) in Lisbon 2005
$a_{\mu}$ (had; $0.6<\sqrt{s} \leqslant 1.0 \mathrm{GeV}$ )

## Can theory help?

- QCD test of the spectral function
- Use unitarity, analyticity and chiral symmetry in order to construct an explicit representation of the vector form factor
[Heyn and Lang 81]
[de Trocóniz and Ynduráin 02]


## FESR test of the $e^{+} e^{-}$and $\tau$ spectral functions

$$
e^{+} e^{-} \text {data }
$$


$\tau$ data


## An improved representation of the form factor

- Omnés representation (57)

$$
F_{V}(s)=\exp \left[\frac{s}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} d s^{\prime} \frac{\delta\left(s^{\prime}\right)}{s^{\prime}\left(s^{\prime}-s\right)}\right] \equiv \Omega(s)
$$

## An improved representation of the form factor

- Omnés representation (57)

$$
F_{V}(s)=\exp \left[\frac{s}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} d s^{\prime} \frac{\delta\left(s^{\prime}\right)}{s^{\prime}\left(s^{\prime}-s\right)}\right] \equiv \Omega(s)
$$

- Split elastic from inelastic contributions

$$
\delta=\delta_{\pi \pi}+\delta_{\mathrm{in}} \Rightarrow F_{V}(s)=\Omega_{\pi \pi}(s) \Omega_{\mathrm{in}}(s)
$$

Eidelman-Lukaszuk: unitarity bound on $\delta_{\text {in }}$

$$
\begin{gathered}
\sin ^{2} \delta_{\text {in }} \leq \frac{1}{2}\left(1-\sqrt{1-r^{2}}\right) \quad r=\frac{\sigma_{e^{+} e^{-} \rightarrow \neq 2 \pi}^{l=1}}{\sigma_{e^{+} e^{-} \rightarrow 2 \pi}} \\
\Rightarrow \quad \operatorname{Im} \Omega_{\text {in }}(s) \simeq 0 \quad s \leq\left(M_{\pi}+M_{\omega}\right)^{2}
\end{gathered}
$$

## An improved representation of the form factor

- Omnés representation (57)

$$
F_{V}(s)=\exp \left[\frac{s}{\pi} \int_{4 M_{\pi}^{2}}^{\infty} d s^{\prime} \frac{\delta\left(s^{\prime}\right)}{s^{\prime}\left(s^{\prime}-s\right)}\right] \equiv \Omega(s)
$$

- Split elastic from inelastic contributions

$$
\delta=\delta_{\pi \pi}+\delta_{\mathrm{in}} \Rightarrow F_{V}(s)=\Omega_{\pi \pi}(s) \Omega_{\mathrm{in}}(s)
$$

Eidelman-Lukaszuk: unitarity bound on $\delta_{\text {in }}$

$$
\begin{gathered}
\sin ^{2} \delta_{\text {in }} \leq \frac{1}{2}\left(1-\sqrt{1-r^{2}}\right) \quad r=\frac{\sigma_{e^{+} e^{-} \rightarrow \neq 2 \pi}^{l=1}}{\sigma_{e^{+} e^{-} \rightarrow 2 \pi}} \\
\Rightarrow \quad \operatorname{Im} \Omega_{\text {in }}(s) \simeq 0 \quad s \leq\left(M_{\pi}+M_{\omega}\right)^{2}
\end{gathered}
$$

- $\rho-\omega$-mixing must also be explicitly taken into account

$$
F_{V}(s)=\Omega_{\pi \pi}(s) \Omega_{\mathrm{in}}(s) G_{\omega}(s)
$$

## An improved representation of the form factor



## An improved representation of the form factor


$P=$ number of parameters in $\Omega_{\text {in }}$

## An improved representation of the form factor


$P=$ number of parameters in $\Omega_{\text {in }}$

## Discussion

- Reduced statistical error in the evaluation of the integral

| $P$ | $\chi^{2} /$ d.o.f. | $a_{\rho}$ | $a_{2 M_{K}}$ |
| :---: | :---: | :---: | :---: |
| 0 | $84.0 / 83$ | $420.0 \pm 2.1$ | $489.5 \pm 2.2$ |
| 1 | $75.9 / 82$ | $423.4 \pm 2.4$ | $493.7 \pm 2.5$ |
| 2 | $75.8 / 81$ | $423.1 \pm 2.6$ | $493.2 \pm 2.8$ |
| 3 | $73.7 / 80$ | $422.2 \pm 2.7$ | $492.2 \pm 2.9$ |

GC SIGHAD (04)
Cf. Jegerlehner (03) (using the trapezoidal rule):

$$
a_{\rho}=429.02 \pm 4.95 \text { (stat.) }
$$

Difference in central value mostly due to FS radiation, not included in our analysis

$$
10^{-10} a_{\rho}=a_{\mu}^{\text {hvp }}(\sqrt{s} \leq 0.81 \mathrm{GeV}) \quad 10^{-10} a_{2 M_{K}}=a_{\mu}^{\text {hvp }}\left(\sqrt{s} \leq 2 M_{K}\right)
$$

## Discussion

- Reduced statistical error in the evaluation of the integral

$$
\Delta a_{\rho}=4.95 \rightarrow 2.7
$$

- Being able to fit a set of data with this parametrization is quite nontrivial and provides a check on the data


## Discussion

- Reduced statistical error in the evaluation of the integral

$$
\Delta a_{\rho}=4.95 \rightarrow 2.7
$$

- Being able to fit a set of data with this parametrization is quite nontrivial and provides a check on the data
- None of the analyses so far has taken into account all the information coming from analyticity, unitarity and chiral symmetry


## Discussion

- Reduced statistical error in the evaluation of the integral

$$
\Delta a_{\rho}=4.95 \rightarrow 2.7
$$

- Being able to fit a set of data with this parametrization is quite nontrivial and provides a check on the data
- None of the analyses so far has taken into account all the information coming from analyticity, unitarity and chiral symmetry
- The analysis is work in progress with
I. Caprini, H. Leutwyler and F. Jegerlehner


## Summary

- the precision currently achieved in the measurement of $(g-2)_{\mu}$ implies a thorough test of our current understanding of particle physics
- the experimental uncertainty is at present lower than the expected size of contributions from supersymmetric extensions of the standard model
- in order to disentangle these we must control the contributions of hadronic physics at low energy at the $1 \%$ level
- the current experimental situation concerning $e^{+} e^{-} \rightarrow$ hadrons and the hadronic $\tau$ decay is unfortunately still unclear, but changing rapidly
- theory
[ $\equiv$ analyticity, unitarity and $\chi$-symmetry] can help in the evaluation of the integral


## $\tau$ vs $e^{+} e^{-}$data

Isospin relation between $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}$and $\tau \rightarrow \nu \pi \pi^{0}$ is currently not understood

use of $\tau$ data in the evaluation of $a_{\mu}^{\mathrm{hyp}}$ is problematic

## $\tau$ vs $e^{+} e^{-}$data

If we apply our analysis to the (isospin-corrected) $\tau$ data we get (for $P=3$ )

$$
\begin{array}{rll}
\tau: & a_{\rho}=429.9, & a_{2 M_{K}}=504.3 \\
e^{+} e^{-}: & a_{\rho}=422.2, & a_{2 M_{K}}=492.2
\end{array}
$$

