Measurement of Muon Dipole Moments

a critical look at the future

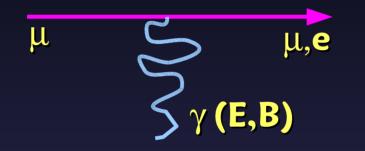
Gerco Onderwater KVI/Rijksun iversiteit Groningen CERN, November 2005

Introduction

(Anomalous) Magnetic Dipole Moment

Electric Dipole Moment

Conclusions



Dipole Moment in a Nut Shell

 $d = \eta \times 4.7 \times 10^{-14} e \cdot cm$

$$\mathbf{MDM:} \, \vec{\mu} = g \, \frac{e}{2 \, mc} \, \vec{S}$$

EDM:
$$\vec{d} = \frac{\eta}{2} \frac{e}{2mc} \vec{S}$$

 $H = -\left(\vec{\mu} \cdot \vec{B} + \vec{d} \cdot \vec{E}\right)$

MDM and EDM closely related to each other and e.g. $\mu \rightarrow e\gamma$ (SUSY)

Experimentally accessible through interaction with electric and magnetic field:

$$\tau = \vec{\mu} \times \vec{B} + \vec{d} \times \vec{E}$$

MDM & EDM Probe Radiative Corrections

	MDM (g):	EDM (ղ)։
tree	2 (Dirac)	0
QED	0.002…	0
hadronic	0.0000012	0
weak	0.00000003	0
HO weak + hadr.	•••	~10 ⁻²² CKM CPV
HO weak + hadr. theory	 2.0023318366(14)	
theory	2.0023318366(14)	~10 ⁻²²

Measurement Principle

1. Prepare highly polarized ensemble of muons

- Produce pions with high energy protons
- parity violation in $\pi \to \mu \nu$
- 2. Let the muons interact with B and E field
 - Electromagnetic storage ring

• BMT:
$$\vec{\omega} = \frac{e}{m} \left[a \vec{B} + \left(a - \frac{1}{\gamma^2 - 1} \right) \vec{\beta} \times \vec{E} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \vec{E} \right) \right]$$

- 3. Measure the evolution of the spin orientation
 - parity violation in $\mu \to e \nu_e \nu_\mu$
 - **boost:** $\theta^{cm} \rightarrow \mathbf{E}_{e}^{lab}$

MDM

MDM Measurement

Measure a = (g-2)/2 (we know "2" quite well) Use a homogeneous magnetic field B (easy to measure) Pick $\gamma \approx 29$, so that $a_{\mu} - 1/(\gamma^2 - 1) = 0$ Focus beam with a quadrupole E (no need to measure) Assume $\eta = 0$

$$\omega_a = a \frac{e}{m} B$$

The E821 Experiment at BNL

RIPBOWMAN PHOTO

Data Sample

vertical distance (cm)

0

-1

-2

-3

ω_a (6x10⁹ counts)

electron time spectrum (2001)

$$a_{\mu} = \frac{m}{e} \frac{\omega_{a}}{B} = \frac{\omega_{a}/\omega_{p}}{\lambda - \omega_{a}/\omega_{p}}$$

Gerco Onderwater, CERN, 9 November 2005

1.5

1.0

0.5

0.0

0.0

0.5

1.0

1

radial distance (cm)

2

0

0.0

-0.5

1.0

-3

-2

-1

-4

 $\lambda = \frac{\mu_{\mu}}{2}$

 μ_{p}

2.5 ppm

2

1.5

0.5

0

-0.5

-1

-1.5

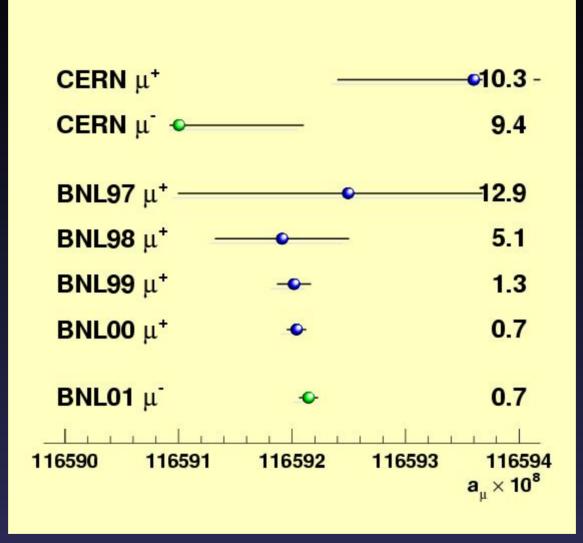
-2

-2.5 ppm

1

-1.0

-0.5

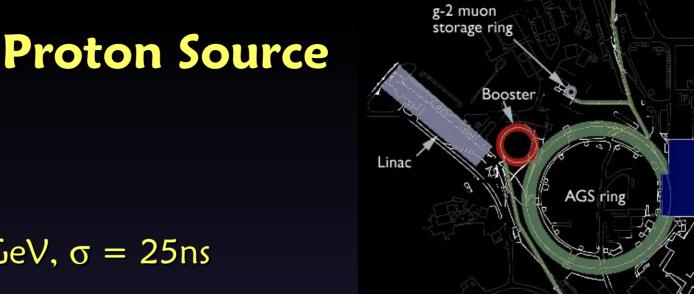

3

 $\frac{\delta\lambda}{2} = 3 \times 10$

4

-0.5

History of $g-2_{\mu}$


 $\Delta a/a = 0.5 \text{ ppm(stat.)} \pm 0.2 \text{ ppm}(\omega_p) \pm 0.2 \text{ ppm}(\omega_a)$

Is there room to wiggle?

Possible improvements to the experiment

AGS near ideal: few TP/pulse @ 30GeV, $\sigma = 25$ ns

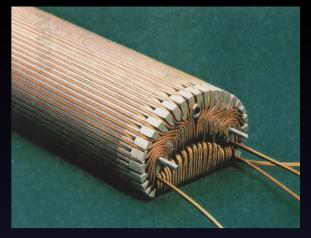
Less than ideal pulse structure: 12 bunches, $\Delta t = 33$ ms, $T_{rep} = 2.5$ s

Would like: $\Delta t = T_{rep} \approx 1ms$ (J-PARC?)

New high intensity facility would be helpful

Pion Decay Line

Must have $p_{\mu} = 3.094 \text{ GeV/}c$


Two options to get polarized muons: • $p_{\pi} = 3.1 \text{ GeV/}c$ (forward decay in CM) done $L = 100m \rightarrow about 50\%$ of πs decay Many π s make it into storage ring: flash • $p_{\pi} = 5.3 \text{ GeV/}c$ (backward decay in CM) planned $L = 100m \rightarrow about 30\%$ of πs decay Excellent π rejection; "stiffer" beamline, $\mathbf{p}_{\mu} \neq \mathbf{p}_{\pi}$ **Both cases: could use larger acceptance planned Gerco Onderwater, CERN, 9 November 2005**

Muon Injection

Large improvement over CERN exp't.

Superconducting Inflector:

engineering masterpiece! **BUT**: limited acceptance Could gain factor 2 in flux from open end Larger acceptance difficult

Fast electrostatic kicker: 95kV, 150ns

works quite well could improve storage efficiency with larger kick

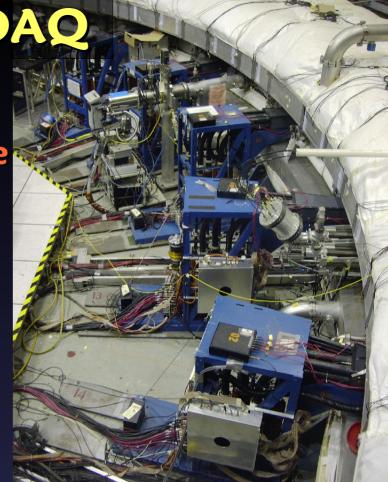
Imperfections lead to hard-to-understand beam dynamics

Magnetic Storage Ring

Magnificent (average) homogeneity in B-field of 0.1 ppm

Would like $\delta B/B$ same order as $\delta a/a$

Would like better temperature stability (field gradients!)


Would like faster field measurement (now: 2hours)

Need DAQ/hardware upgrade

Polarimetry & DAQ

PbSciFi calorimeters, Scint. Hodoscope 400 Mhz interlaced WFD combined readout of 4 PMTs highest E showers not fully contained fairly robust, but outdated DAQ fast switching gate; fast recovery

Would like:

500 Mhz non-interlaced WFD individual readout of >4 PMTs, with position sensitivity full shower containment new DAQ no (need for) flash gate

Getting the Answer

E-field and Pitch Corrections: +0.81 ±0.08 ppm may become critical

$$a_{\mu} = \frac{\omega_a / \omega_p}{\lambda - \omega_a / \omega_p}$$

 λ measured at 0.12ppm @ LANL in $\mu^+e^-h.f.s.$ used same equipment as in g-2 (common syst. drop out!) with theory 0.03ppm (how reliable?) possibly problematic

Comparing to Theory

QED error very small, but "monopoly" by Kinoshita He's had the guts to do it! Who else?

Hadronic error > exp't error Sigh ... (see next talk)

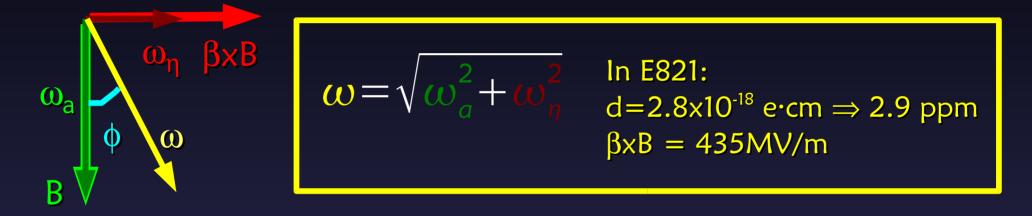
Weak contribution Seems to be under control

New Physics plenty ... especially interesting sensitivity to SUSY

Prospects for the Future

BNL E821: done 0.5 ppm! BNL E969: Scientific approval; no pecunia 0.2 ppm! **J-PARC LOI:** 0.03 ppm? **Farley concept:** NMR in-flight, $\gamma \neq \gamma_{magic}$ speculative **Theory**: hinges on hadronic contribution 0.2 ppm? New Physics Potential: competitive sensitivity

If LSP found: best measurement for $tan(\beta)$



Gerco Onderwater, CERN, 9 November 2005

EDM

EDM Measurement

$$\vec{\omega} = \frac{e}{m} \left[a\vec{B} + \left(a - \frac{1}{\gamma^2 - 1}\right)\vec{\beta} \times \vec{E} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \vec{E}\right) \right] \equiv \vec{\omega}_a + \vec{\omega}_\eta$$

Tilt in precession plane: $\phi \cong \omega_{\eta}/\omega_{a} = \eta \beta/2a$ $S_{v} \cong S_{0} \phi \sin(\omega_{a}t) \qquad S_{L} \cong S_{0} \cos(\omega_{a}t)$

Modulation of vertical distribution @ 90° w.r.t. g-2

EDM Sensitivities

$$d_{\mu} < 2.7 \times 10^{-19} e \cdot cm$$

 $\phi \sim \text{few nrad}$

Thesis Ron McNabb (E821) systematic limited

Boost sensitivity ($\phi \rightarrow 90^{\circ}$) by

$$\vec{w}_a = a\vec{B} + (a - \frac{1}{\gamma^2 - 1})\vec{\beta} \times \vec{E} \to 0$$
 $\mathbf{E} \cong \mathbf{aBc}\beta\gamma^2$

Tilt in precession plane: $\phi = \operatorname{atan}(\omega_{\eta}/\omega_{a}) \cong 90^{\circ}$

$$S_{v} \cong S_{0} \omega_{\eta} t \qquad S_{L} \cong S_{0}$$

Linear growth of vertical spin component

Planned Activities

J-PARC LOI (2003) to search for d_{μ} at the level of 10⁻²⁴ e·cm

To reach this sensitivity, need NP² = 5×10^{16} with P ~ 0.3, need 5×10^{17} detected muons (wow!!!)

At $\gamma = 5$, cycle time is about 100 µs \rightarrow need 10 kHz rep. rate

For $T = 10^7$ s, need >5x10⁶ muons per spill

ONLY @ NEXT GENERATION μ **FACTORY** and then it's still statistics limited

Conclusion

Conclusion

Measurement of muon g-2 at the level of 0.2ppm is certainly possible (mainly requires statistics)

Several technological challenges, none problematic, and lots of room for improvement

Potential problems appear near 0.1 ppm: λ and E/pitch

Theory: break QED monopoly, reduce δa_{μ} (hadr.) < 0.6 ppm

Search for muon EDM at the level of 10⁻²⁴ e·cm seems technically doable, but

Requires new, very high intensity facility

Extra Slides

New Physics: SUSY with large $tan\beta$

$$a_{\mu}(\text{SUSY}) \simeq \frac{\alpha(M_Z)}{8\pi \sin^2 \theta_W} \frac{m_{\mu}^2}{\tilde{m}^2} \tan \beta \left(1 - \frac{4\alpha}{\pi} \ln \frac{\tilde{m}}{m_{\mu}} \right)$$
$$\simeq (\text{sgn}\mu) \ 13 \times 10^{-10} \ \tan \beta \ \left(\frac{100 \text{ GeV}}{\tilde{m}} \right)^2$$

Connection between \textbf{d}_{μ} and \textbf{a}_{μ} in SUSY

$$d_{\mu} = 2 \times 10^{-22} e \cdot cm \frac{a_{\mu}^{SUSY}}{25 \times 10^{-10}} \tan \phi_{CP}$$

