
1Marco.Poleggi@cern.ch

Proxy servers revisited

Marco Emilio Poleggi
Marco.Poleggi@cern.ch

12/04/2005

2Marco.Poleggi@cern.ch

Outline

□ Proxy architecture
□ Reverse proxies
□ Apache 2.0 migration
□ Squid vs Apache
□ Proposal: two-tier caching
□ New NCM component: ncm-rproxy
□ Deployment on CERN-CC clusters

3Marco.Poleggi@cern.ch

Proxy architecture
LXSERV

linuxsoft/AIMS

DNS-load balanced HTTP

DNS load balanced HTTP

M

M

M’

H H H

backend

frontend

□ See “Proxy servers in CERN-CC”, Germàn Cancio, 02/03/04,
http://agenda.cern.ch/fullAgenda.php?ida=a04930
✚ Basic concept
✚ Current deployment

4Marco.Poleggi@cern.ch

Proxy architecture details

□ Two-tier proxy-caching hierarchy:
✚ Cluster-side caching: one head-node per cluster

decouples cluster nodes from the server tier
→ Cluster nodes (clients) talk to their head-node, as if it were the

origin server
→ Head-nodes forward requests to the server tier

✚ Server-side caching: many DNS-load balanced front-
end proxies decouple clusters from the back-end server

→ Unique DNS name for front-ends
→ Front-ends forward requests to the back-end server
→ The back-end is a standard HTTP server

□ Based on reverse proxies
✚ Apache (originally rel. 1.3, now 2.0?) or Squid servers
✚ Semi-transparent to clients

5Marco.Poleggi@cern.ch

Reverse proxies

□ They act as “dispatchers” towards (possibly)
different repositories according to a given mapping
✚ Content-based mapping: path ↔ URL

→ /swrep ↔ http://lxservb01/swrep

□ Requested objects can be locally cached
✚ Memory cache: very popular small objects
✚ Disk cache: less popular big objects
✚ Cacheable objects:

→ static/long-lived: software packages (RPM’s, PKG's, ...)
→ dynamic/short-lived: XML profiles, ...

✚ Uncacheable objects: those generated on-the-fly
(CGI/ASP/JSP results)

6Marco.Poleggi@cern.ch

Apache 2.0 migration
□ Configuration file can be split

✚ More control over module directives:
renaming/removing a conf file disables the module

✚ Proxy/SSL/... configuration in separate files
□ Cache support is now modular inside mod_proxy

✚ mod_cache + mod_mem_cache + mod_disk_cache
✚ More flexible

→ Different caching strategies can be adopted according to
pathnames and sizes: selective caching in main memory or
on disk (or both)

✚ More complex configuration
→ Some parts may depend on other control directives
→ Not always possible to arbitrarily append missing directives

□ Uniform logging directives
It seems fine, but...

7Marco.Poleggi@cern.ch

Apache 2.0 migration (II)
□ Cache porting incomplete! As of rel. 2.0.46 (SLC3.0.4):

✚ Memory caching not fully reliable
→ Apparently, HIT after many consecutive MISSes

✚ No garbage collection for disk caching!
→ Not even for the latest 2.0.53 rel.
→ Helper program htcacheclean from Apache 2.1 (alpha) can be

used, but requires a local build (not distributed as package)

✚ Logging of caching information is fuzzy
→ Statistic analysis on log files not possible
→ Maybe a race condition is fixed in rel. 2.0.53

□ What to do?
✚ Fall-back to Apache 1.3 is problematic in SLC3...
✚ Test Apache 2.0.46 + disk-caching + htcacheclean
✚ Test Apache 2.0.53 + mem/disk-caching + htcacheclean
✚ Try Squid

8Marco.Poleggi@cern.ch

Squid vs Apache

□ Reverse proxy in accelerator mode via a translation layer
□ Caching-proxy only

✚ Must use also Apache if Web server needed
□ Advanced cache management: hierarchies, ICP, ...

✚ Cooperative caching could be interesting
✚ Native in-memory caching of “hot” objects
✚ Cache statistics via CGI (Web server required)

□ Recompilation might be required
✚ Disable/enable some default options
✚ Patch for custom logging a la Apache

→ Statistic analysis through dedicated tools such as Webalizer

□ Configuration not straightforward for multiple back-ends
✚ External redirector helper needed

9Marco.Poleggi@cern.ch

If things go well...

10Marco.Poleggi@cern.ch

Proposal: a two-tier caching strategy

□ Both memory and disk are used
✚ “small” objects in memory and “big” ones on disk

→ Separated caches: no room wasted
→ mem-cache should settle to holding the “working-set”, i.e.,

the set of most popular files

✚ Try to cache in memory first
✚ Fast access to popular files: should bear traffic

surges during large updates/upgrades
✚ Plenty of disk space for large files

→ To avoid engaging back-ends and network with long
transfers

□ Main tuning knobs (to maximize the hit ratio)
✚ Cache sizes
✚ Access size threshold between memory and disk

11Marco.Poleggi@cern.ch

Proposal: a two-tier caching strategy (II)

□ Why? For Web objects:
✚ File popularity (frequency of occurrence of the r-th

ranked item) is Zipf-like: P(r)~r^(-b), b~1
✚ File-size distribution is heavy-tailed: P[X>x]~x^

(-a), x ∞, 0<a<2
✚ Correlation: small files are more popular

→ Working-set much smaller than file-set
→ Popular files are in the distribution's body, less popular ones

lie in the tail

□ But, what about package/XML objects?
✚ Probably similar distribution... it could be verified,

since we know the file-set

12Marco.Poleggi@cern.ch

New NCM component: ncm-rproxy

□ ncm-rproxy configures a standard Apache 2.0 as a
reverse proxy-caching server
✚ Support for both disk-cache and mem-cache... for a

possibly nice future ;-)
✚ Most important configuration directives supported
✚ Minimal effort re-configuration:

→ Modifies a main configuration template then merges it with
the standard Apache's configuration file

→ Modifies a proxy-dedicated configuration template then
copies it inside the Apache's configuration tree

✚ All changes are initially made to temporary files, then
committed, if needed

13Marco.Poleggi@cern.ch

New NCM component: ncm-rproxy (II)

□ Three-tier configuration:
✚ /software/components/rproxy/httpd/: basic

Apache's directives
→ mem/disk-cache enabling

✚ /software/components/rproxy/proxy/: proxy-
related directives

→ Restricted access from a given domain
→ Definition of path ↔ URL mappings

✚ /software/components/rproxy/cache/: cache-
related directives

→ Common options: expire times, ...
→ mem-cache options: cache size, maximum cacheable object

size
→ Disk-cache options: cache root and size,

minimum/maximum cacheable object size

14Marco.Poleggi@cern.ch

Deployment on CERN-CC clusters
□ Currently deployed on LXPLUS/SLC3

✚ Head-nodes: lxc1m990 and lxc1m991
✚ Apache 2.0.46 + disk-cache [+ mem-cache]

□ Configuration
✚ Default/maximum expire time: 1 day
✚ Mem-cache size: 100MB
✚ Mem/disk-cache size threshold: 1MB
✚ Disk-cache size: 6GB

→ No garbage collection! However, the file-set is bounded

✚ Max disk-cache object size: 100MB
□ Performance study

✚ Need benchmarking and/or statistic analysis of logs...
→ Dedicated tools, such as Webalizer

✚ lemonweb for overall behaviour

