
Encrypted Data Storage.

John White (for Patrick Guio and Joni Hahkala)

John.White@cern.ch

Helsinki Institute of Physics @ CERN

Brno, Tuesday June 21st, 2005

• Requirement.

• The plan.

• Present Status.

• The way ahead.



Encrypted Data Storage Requirement.

• There is a request/requirement from NA4/Biomed to provide an

encrypted data storage (EDS)scheme.

• From https://savannah.cern.ch/projects/egeeptf/

PTF # Name Client
100542 On-disk encryption of data Biomed
100597 Auto data encryption NA4
100661 Long term data storage NA4
100706 Store data in encrypted form NA4

• From the above requirements we must provide the means to:

◦ Encrypt data on disk to prevent data leaks at the storage site level;

◦ Automatically encrypt data when it is written to a storage element.

◦ Not use a user’s Grid credentials for long term data storage;

◦ It shall be possible for the user to store data in an encrypted form.

John White, Helsinki Institute of Physics @ CERN 1



EDS General Plan.

• Services involved:

◦ Data storage system

· Consists of many services.

· Stores the encrypted file and creates/returns GUID.

◦ Metadata catalog

· Stores the key(-parts in the second proto).

· Storing and retrieval based on GUID.

◦ OpenSSL

· Used to create the key.

· Used to encrypt/decrypt the file (file stream).

John White, Helsinki Institute of Physics @ CERN 2



EDS General Plan. (0)

• Prototype 0.

• Provide documented openssl command-line programs to generate key.

• Provide documented openssl command-line programs to do encrypt/decrypt.

• Use the DM client programs to do storage/retrieval of key(s) and files.

• Essentially create some csh/sh scripts.

John White, Helsinki Institute of Physics @ CERN 3



EDS General Plan. (A)

• Provide a (C/C++) API to encryption/decryption methods.

• NO key splitting.

• Methods (packages) needed:

◦ byte createKey(int len) (openssl)

◦ encryptFile(file in file, file out file, String algorithm, byte[] key) (openssl)

◦ int storeKey(byte[][] key parts, int numparts, String[] MC endpoints)

(gLite DM)

• Reverse methods:

◦ byte[][] getKey(String[] MC endpoint) (gLite DM)

◦ int decryptFile(file in file, file out file, String algorithm, byte[] key)

(openssl)

• The key storage and retrieval will use the gLite DM API.

John White, Helsinki Institute of Physics @ CERN 4



EDS General Plan. (B)

• Provide a (C/C++) API to encryption/decryption methods.

• Key split into n parts.

• Methods (packages) needed:
◦ byte createKey(int len) (openssl)

◦ encryptFile(file in file, file out file, String algorithm, byte[] key) (openssl)

◦ byte[][] splitKey(int num parts) (generic)

◦ int storeKeys(byte[][] key parts, int numparts, String[] MC endpoints)
(gLite DM)

• Reverse methods:
◦ byte[][] getKeyParts(String[] MC endpoints) (gLite DM)

◦ byte[] combineKeyParts(byte[][] parts, int numparts) (generic)

◦ int decryptFile(file in file, file out file, String algorithm, byte[] key)
(openssl)

• The key storage and retrieval will use the gLite DM API.

John White, Helsinki Institute of Physics @ CERN 5



EDS: Current Status.

• Received an example encrypt/decrypt program from J. Montagnat.

• Unfortunately, the mechanics are incorrect. Useful as a guide.

• So we start from scratch...

• Generate a key the openssl way:

#include <openssl/bn.h>

// Generate the 256 bit key. Symmteric encryption.
BIGNUM *largekey;

largekey = BN new();

BN rand(largekey, 256, 0, 0);

BN print fp(stdout, largekey);

• Currently, we are working on the openssl encrypt/decrypt.

• Afterwards, with the DM gLite APIs.

• Lots of work to do.

John White, Helsinki Institute of Physics @ CERN 6



Conclusions.

• Work underway by JRA3 “CERN” cluster.

• We have a openssl contact at KTH, Richard LeVitte.

John White, Helsinki Institute of Physics @ CERN 7


